
Tomáš Nouza Cloud robotics: Google Maps for NIFTi

Cloud Robotics: Using Google Maps for
NIFTi Robot Localization

Author: Tomas Nouza
Supervisor: Michal Reinstein

summer internship at CMP at CTU FEL [1]
from July 12 to September 16 2011 (5 weeks)

1 Abstract
This document concerns cloud services and intends to bring a more insight into the current

state of the art of the map visualization services. In principle, cloud services enable distribution of
computing power to many computers. Robots often have many sensors but not as much computing
power to analyze all sensors in all ways we want in real-time. It is favorable to distribute
computation power to other devices to allow robots to use low-voltage processors and hence extend
the battery life. For this purpose, the Robot Operating system (ROS) [2] is an ideal solution.
The ROS is an open source, meta-operating system for robots developed by Willow Garage [3] and
is considered a current state of the art among software for robots. It provides services that would be
expected from an operating system, including hardware abstraction, low-level device control,
implementation of commonly-used functionality, message-passing between processes, and package
management. It also provides tools and libraries for obtaining, building, writing, and running code
across multiple computers. More about the ROS and cloud robotics can be found in [4].

When any robot finishes his mission, it is essential to have a report covering important
details regarding the performance and overall operation. The aim of this project is to provide
a complete solution including:

• simple and effective sharing of reports with authorized persons

• online precise map visualization

• software background that is easily extendable to any Objects of interest to be included into
report

In regard to the points above, it is beneficial to use the state of the art public cloud services such as
the Google services to solve this problem.

1

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

Contents
1 Abstract..1
2 Introduction...3
3 Theory and Methodology and Resources..4

3.1 Resources...4
3.2 Kmlexport node...5

3.2.1. User documentation..5
3.2.2. Technical documentation...5

3.3 Googlemaps node..5
3.3.1. User documentation..5
3.3.2. Technical documentation...6

4 Evaluation and Results..7
4.1 Kmlexport node...7
4.2 Googlemaps node..8

5 Discussion..11
6 Conclusion...11
7 Appendices..12

A headers..12
kmllogger.cpp..12
googlemaps.py..12

B launch file...12
References..13

2

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

2 Introduction
In this work we will look closer to some Google services and their possible application on

the search and rescue robot developed as part of the NIFTi project. NIFTi [5] is a European project
focusing on tasks in Urban Search & Rescue. It concerns human-robot cooperation in dynamic
environments. Sharing of information via various interfaces is crucial for any human-robot
cooperation and hence visualization of the robot's trajectory and other things, that robot has
recognized during mission (victims, cars, etc.), is key for the robot operators.

The Google Maps API [6] is a powerful tool for visualizing almost everything into online
maps. KML (Keyhole Markup Language) [7] is XML like format for describing geographical data.
It is an international standard maintained by the Open Geospatial Consortium, Inc. (OGC) [8]. This
standard is used in all Google service for geographical input.

Another useful tool is the Google Fusion Tables [9]. It is a modern data management and
publishing web application that makes it easy to host, manage, collaborate on, visualize, and publish
data tables online. Data visualization can be obtained through the Google Maps.

For running any application on the robot is essential to use the ROS [2]. It provides
automatic management system for message-passing between nodes [11]. A node is an executable
that uses the ROS to communicate with other nodes using topics [12]. Topics are named buses over
which nodes exchange the data in the form of messages. When using a computer network connected
to the robot(s), the ROS automatically passes messages, so any node running on one computer can
interact with all the other nodes. No code implementation is needed since it is open source package
based finished solution provided by Willow Garage [3].

Another handy service is the Google Latitude [13]. It saves user current position and
publishes it to other authorized users. Every upload of position is saved with a time-stamp creating
an easily accessible history. Benefit is the simplicity but it needs internet connection all the time
which would be problem in many locations (e.g., tunnel, building on fire, etc.). Main disadvantage
is that there is no way to visualize anything more than just the position information.

The main aims of this work are:

1. To analyze the current state of the art regarding cloud robotics.

2. To analyze the possibilities of the Google API for cloud and web services.

3. To implement a node for processing of GPS trajectory (and for the future also detected
objects) into KML files using Google standards to ensure easy and robust import to online
fusion table or Google Earth application.

4. To evaluate this node on real GPS data.

5. To create a demo program, which in a robust way collects the desired trajectory data and if
internet is available uploads these data to the robot's Gmail account.

6. To upload final code to the NIFTi project SVN [14].

3

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

3 Theory and Methodology and Resources

3.1 Resources

BlueBotics Unmanned Ground Vehicle (UGV) [10] on Fig. 1 is a robotic platform developed
for the purpose of the NIFTi project. For its localization it can use the SICK LMS-151 laser
scanner, the Point Grey Ladybug 3 omnicamera and the MTI-G Xsens inertial unit (IMU) with
a GPS module. Combination of these should provide sufficient position accuracy of the robot. At
this stage, implementation of corresponding data fusion is still under development and hence
the GPS module was the only source of absolute position information. Colleges from ETH Zürich
developed the mtig_node for reading data from GPS and IMU. This node can be considered a driver
layer in ROS and hence is used in this work as standard data input.

Google Earth (GE) [15] is a free virtual globe, map and geographical information program.
It maps the Earth by the superimposition of images obtained from satellite imagery, aerial
photography and GIS 3D globe. A strong feature of the GE is the ability to open and process KML
files which could also be linked to other KML files that can even change dynamically. In KML
there are many kinds of object we can draw into the globe [7].

Google Fusion Tables is a web service that offers functionalities and possibilities similar to
an SQL database but it has many above-standard functions. It provides means for visualizing
the data with charts, plots, timelines as well as geographical maps. It has data type geometry in
which KML code can be inserted. There are many limitations [16], e.g. as how much code can be
inserted into one row, but fortunately Google Fusion Tables are labeled as beta which means that
they are still under development and we expect there will be many improvements in the future. At
this stage there can be inserted only 3 types of objects: point, line and polygon. In comparison to
the GE it is not as much but it is sufficient for most requirements.

Figure 1: BlueBotics UGV [10] used in NIFTi project [5]

4

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

3.2 Kmlexport node

3.2.1. User documentation

Kmlexport is a ROS node that allows almost real-time drawing of robots trajectory into
a KML file, which can be opened in Google Earth application as shown in Fig. 3. Once started,
the program creates link.kml file in /kml directory which links to the actual KML file being created.
Then it listens to the NavSatFix message published on the /mtig_node/pos_nav topic and generates
a new KML. After execution the kmlexport, it is possible to open the link.kml in the Google Earth
and the actual robot's position is plotted and then refreshed every 5 seconds. To run the kmlexport
node look at chapter 4.1.

3.2.2. Technical documentation

Kmlexport can be modified using the following parameters in the source code:

• LINK_REFRESH_FREQ sets refresh rate for the link.kml in seconds.

• KML_UPDATE_FREQ sets the frequency of generation of new KML file (number of
messages).

• LON_ACC & LAT_ACC to reduce number of points in KML file, there is a filtering to
a minimum position change (in degrees, LAT means latitude, LON means longitude).

• ROBOT_NAME specifies robot name to be shown in title.

• ALTITUDE defines height of the trajectory displayed above terrain (in meters).

3.3 Googlemaps node

3.3.1. User documentation

The ROS node googlemaps.py subscribes the NavSatFix messages published on
the /mtig_node/pos_nav topic and when the robot's position changes it is saved into the path.tmp
file with a timestamp. When the program is terminated, it creates a new table using Google Fusion
Tables (GFT) and fills this table with the collected data. At this stage, the program can only upload
trajectory from the last mission. The functionality can further be easily extended1 to uploading
additional information regarding detected objects and their exact position; this concerns cars,
victims and others as specified in the NIFTi project documentation.

Internet connection is needed only at the end of the mission. If the connection is fault or lost,
there is a possibility to still upload the data by running the googlemapsrecovery.py node, which
processes the data as specified in the path.tmp file. Note that this file is replaced every execution of
googlemaps.py.

Accessing the data over web: Data are store at http://docs.google.com (login as cturobot1
with password jednoducheheslo). Default visibility of the document is private which means that
only people with access to the robot's Google account can see the data. The functionality to share
the document with others or to publish the map on any web site is an integral part of the Google
Documents services portfolio.

For more information about using this node see chapter 4.2.

1 The googlemaps node for ROS is available in the form of first final version; few other extending functionalities are
still under development .

5

http://docs.google.com/

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

3.3.2. Technical documentation

Parameters:

LON_ACC & LAT_ACC are placed on the line 33, 34. Their purpose is to reduce number of
points logged. There is a filtering limitation implemented to a minimum position change (in
degrees) for better visualization performance, i.e. to avoid a large number of overlaying objects to
be visualized (LAT means latitude, LON means longitude).

Configuration:

For the correct performance, the robot's Google account login and password has to be
configured on the line 15. Same line is in googlemaps.py and in the googlemapsrecovery.py. In
order to change the login parameters, for example when different Google account is to be used, both
source codes have to be changed.

Communication:

To communicate with the Google server authorization is required. First step is to get an
authorization key, which can be obtained using HTTPS request. Here is an example in BASH [17]:

curl s d Email=cturobot1@gmail.com d Passwd=jednoducheheslo d
service=fusiontables https://www.google.com/accounts/ClientLogin

The usual Google server response is as follows:

SID=DQAAALAAAAAjwq3UMVDOBqClHnuL4TnnfWcSkCEMXsTE9fkIh4u7oMb_aWj3cH
VDXN5ymLWuQrNRl39J3Ec
GcJZkuEvNi_jO1iS9vYFyVGou9BJEcX1ffn9pVqSn3LcvUApTJTquC5i5Mil04
zxHZAEuxKotPNoWgfOehT69FvZApNDfaLYq7fnMOufRua204OiTyZMDWr4cSpf5dKmk
KUvBF890oXiKDukE23996kuPblg9CQ

LSID=DQAAALAAAAAdWgZj3fs2axT33Qa7Gzv_wbME3AfHqDJqD2yZ5Sgfx1swgJTRhd
sim0BtqY8GoqgxrH9bmBWjhWhpwAqfq785z0UtNY4wf6HGk31UTTuiEqk3YtE_WN6Qq
HjV_UDISkVckCheqnhIAgxt4icctiu9NmYGq6kuAHICoP6HoS_LEArn7t3cZCC
VepklvuGKjfbll9R2ZjNd0g2SncoYam5_a0UxFzxKPcApSu_z_A

Auth=DQAAALMAAAD7aUXf3JBinv1suZgOY9eDbVwzBYivTuSUIQZtV
hVkLoucqtfavHV5jM5bljjK9UbYEjpzoiYOFJWuGa4JMBRMDvZ4tNvqk
yO4lC2SwSgutgEJFRc8Lqtbqk3UENbXL
mqd1nZi8QSjVzgs6gat8fikrRCErB44XtSlNCJZU77FutYLi0iLMCNmpf9mIZIqd1_o
PcQ_td0JEMl3eLEgIrvOsREJDaUYonKag1OYF4VfB3u0YIpcje15EOPG1mMY

The authorization key is the statement after string 'Auth='.

This key allows communicating with the GFT like with a common SQL server. The key must be
placed in HTTPS request header as follows:

Authorization: GoogleLogin auth=<your_key>

Here is a python example for better convenience:

import re, httplib, urllib

params =
"Email=cturobot1@gmail.com&Passwd=jednoducheheslo&service=fusiontab
les"
conn = httplib.HTTPSConnection('www.google.com')

6

http://www.google.com/

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

conn.request('POST', '/accounts/ClientLogin?'+params,params)
response = conn.getresponse()
data = response.read()
if response.status == 200:
 authRE = re.compile('uth=\S+')
 key = authRE.search(data).group(0)
 print('a'+key)

Standard usage of the developed googlemaps.py node is based on the assumption that robot
has internet connection at the start of the mission. First it tries to contact Google account server to
get an authorization key. New key is saved to .key file if obtained. When robot compiles HTTPS
header, it looks into .key file for authorization key. Generally there is no problem, if robot doesn't
obtain new authorization key because the old one is valid for about two weeks. Updating
the authorization key is recommended to avoid authorization problems.

4 Evaluation and Results

4.1 Kmlexport node

The following steps give an overview of how to execute and evaluate the developed ROS nodes:

1. Run roscore. Roscore is the first thing you should run when using the ROS. Open terminal
and type:

roscore

If successful confirmation that the process[master] and process[rosout-1] has started will
appear.

2. Roscd to kmlexport directory. Roscd sets the current path to the package path.

roscd kmlexport

3. Run kmlexport.

rosrun kmlexport kmlexport

For every 10 positions that have pass through the move filtration (see 3.2.2. LON_ACC and
LAT_ACC parameters) the KML file is generated and node informs about it as in the Fig. 2.

Figure 2: ROS information output to the terminal while the kmlexport node is running.

7

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

4. Open the link.kml file in Google Earth application. Result should look similar to Fig. 3.

Figure 3: GPS trajectory as displayed in the Google Earth application [15] using kmlexport.

4.2 Googlemaps node

As a part of this project a simple demo was implemented to demonstrate the basic
functionality of the googlemaps node. To see the simple demo, run launch file googlemaps.launch,
that will play bagfile 2011-08-12-11-07-02.bag.active.gps.bag:

roslaunch googlemaps googlemaps.launch

Or run the node as shown below:
1. Run roscore as in 4.1.

2. Run googlemaps.py. Fig. 4 shows standard output where googlemaps successfully obtained
new authorization key.

rosrun googlemaps googlemaps.py

Figure 4: googlemaps running.

3. Terminate the program (e.g. Ctrl+C) to upload data to the Google Fusion Tables. Fig. 5
shows standard output during uploading procedure.

8

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

Figure 5: Terminating the node will upload data to the Google Fusion Tables [9].

4. Created table will appear in Google Docs [18]. In Fig. 6 is highlighted the new document.

Figure 6: Google Docs interface showing the newly generated fusion table [18].

5. To see the map click to the Visualize button. Fig. 7 shows where is the button located.

Figure 7: Example of fusion table generated using googlemaps.py.

6. Map contains robot trajectory and last position. Clicking on the Get embeddable link button
will show HTML tag as in Fig. 8. This can be inserted anywhere on the web pages. Structure
of the tag is logical and can be simply generated by any program or script. Table ID is
obtained during creation of table. In Fig. 9 there is an example of one larger trip placed on
https://sites.google.com/site/cturobotlasttrip/

9

https://sites.google.com/site/cturobotlasttrip/

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

Figure 8: Visualization of the robot trajectory in Google maps.

Figure 9: Visualization of robot's trip in Google maps when inserted into a web page.
Satellite and normal projection were joined in GIMP [19].

10

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

5 Discussion
If googlemaps.py is running from a launch file, it has 15 second to exit after receiving

SIGINT signal before it is forced by SIGKILL. SIGINT and SIGKILL are POSIX defined signals to
process control [20]. This means if googlemaps.py wants to upload more than approximately 30
positions (what usually wants), node will terminates before uploading whole path.tmp file. At this
stage Google server does not receive HTTPS requests fast enough. Solution is to use
googlemapsrecovery.py program which reads path.tmp file and uploads it into Google Fusion
Tables. In the future a cloud buffer will be created in this project to solve this problem.

Actual implementation of both nodes has flaw. The performance currently strongly depends
on the GPS fix, which is in urban environments hard to obtain and maintain. If the fix is lost or
there is a signal outage, the recorded trajectory is not reliable. In buildings, tunnels and other
environments, where we expect most of the robot missions to be carried out, it is usually impossible
to get the GPS fix. In the future, the position will be obtained using advanced estimation and data
fusion methods from INS, odometry, laser scanner and GPS.

Actual implementation processes only robot's last position and trajectory. Next step will be
processing and online marking of various detected objects to the map like cars, victims and many
more.

6 Conclusion
Two nodes for visualization of robot's trajectory were created. They can be found on

the project SVN sites [14]. The first one is the kmlexport, which has ability to show actual robot's
position, trajectory and other things in Google Earth application right during the missions.
The second one is the googlemaps.py, which is intended to report a publish data on the internet at
the end of the mission (or when the internet connection is available). The data published are stored
in Google Documents using the concept of fusion tables and can be shared this way (as any other
Google document). Also there is a possibility to add generated Google map to any web page.
Specific implementation then depends on the web sites and web server services.

11

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

7 Appendices

A headers

kmllogger.cpp
int main(int argc, char **argv)
creates /kml and /tmp directories, creates time based name of current KML file, subscribes listening
/mtig_node/pos_nav callbacks

void writeKml(double curLon,double curLat)
generate KML file from path.tmp and vectors.tmp file

void linkKML(char *name)
creates link.kml which links to currently created KML file

int writeArrow(double fromLon, double fromLat, double toLon, double
toLat)
draws an arrow between two points to vectors.tmp file

void callback(const sensor_msgs::NavSatFix::ConstPtr& msg)
catches NavSatFix messages and if the position has changed greater LON_ACC or LON_ACC than
it calls writeArrow()

googlemaps.py
def main():
makes initialization and subscribes listening /mtig_node/pos_nav callbacks

def getKey():
tries to get an authorization key from Google accounts and saves it into .key file

def callback(data):
catches NavSatFix messages and if the position has changed greater LON_ACC or LON_ACC than
saves it into /tmp/path.tmp file with a timestamp

def writeArrow(fromLat, fromLon, toLat, toLon):
returns a string containing arrow in KML syntax between two points

def upload():
is called on_shutdown() and saves content of /tmp/path.tmp into Google Fusion Tables

B launch file

A launch file provides running more nodes in one command and configuring each of them
with parameters. For the demo to googlemaps.py (see 4.2.) following launch file was used:

<launch>
<node pkg="rosbag" name="play" type="play" args="$(find

googlemaps)/demo/20110812110702.bag.active.gps.bag"/>
<node pkg="googlemaps" name="googlemaps" type="googlemaps.py"

output="screen" cwd="node"/>
</launch>
The second line runs bagfile stored in package googlemaps in directory demo. The third line runs
the node googlemaps.py with output set to the terminal and current working directory set to place,
where the googlemaps.py file is stored.

12

Tomáš Nouza Cloud robotics: Google Maps for NIFTi

References
[1] Center for Machine Perception at Czech Technical University in Prague. Available from

(September 19, 2011): http://cmp.felk.cvut.cz.

[2] Robot Operating System. Available from (September 19, 2011):
http://www.ros.org/wiki/ROS.

[3] Willow Garage. Available from (September 19, 2011):
http://www.willowgarage.com/pages/about-us/overview.

[4] Google I/O 2011: Cloud Robotics, ROS for Java and Android. Available from (September
19, 2011): http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-
ros-java-and-android.

[5] Natural human-robot cooperation in dynamic environments. Available from (September 19,
2011): http://www.nifti.eu/mission.

[6] Google Maps API Family. Available from (September 19, 2011):
http://code.google.com/apis/maps/index.html.

[7] KML Reference. Available from (September 19, 2011):
http://code.google.com/apis/kml/documentation/kmlreference.html.

[8] Open Geospatial Consortium, Inc. Available from (September 19, 2011):
http://www.opengeospatial.org/standards/kml/.

[9] Google Fusion Tables API. Available from (September 19, 2011):
http://code.google.com/apis/fusiontables/?
ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__ut
mb=1.1.10.1316475456&__utmc=1&__utmx=-
&__utmz=1.1316475456.1.1.utmcsr=google |utmccn=%28organic%29|utmcmd=organic|
utmctr=google%20fusion%20tables&__utmv=-&__utmk=123550731.

[10] The new NIFTi robot platform. Available from (September 19, 2011):
http://www.nifti.eu/news/the-new-nifti-robot-platform.

[11] ROS node. Available from (September 19, 2011): http://www.ros.org/wiki/Nodes.

[12] ROS topic. Available from (September 19, 2011): http://www.ros.org/wiki/Topics.

[13] Google Latitude. Available from (September 19, 2011):
http://googleblog.blogspot.com/2009/02/see-where-your-friends-are-with-google.html.

[14] NIFTi SVN. Available from (September 19, 2011):
https://subversion.dfki.de/nifti/code/ros/stacks/nifti_vision/trunk/googlemaps.

[15] Google Earth. Available from (September 19, 2011):
http://www.google.com/earth/index.html.

[16] Using KML for Geographic Data. Available from (September 19, 2011):
http://code.google.com/apis/fusiontables/docs/developers_guide.html#KML.

[17] Bash. Available from (September 19, 2011): http://www.gnu.org/software/bash/bash.html.

[18] Google Docs. Available from (September 19, 2011): https://docs.google.com/.

[19] GNU Image Manipulation Program. Available from (September 19, 2011):
http://www.gimp.org/.

[20] Signal handling. Available from (September 19, 2011):
http://www.yolinux.com/TUTORIALS/C++Signals.html.

13

http://www.yolinux.com/TUTORIALS/C++Signals.html
http://www.gimp.org/
https://docs.google.com/
http://www.gnu.org/software/bash/bash.html
http://code.google.com/apis/fusiontables/docs/developers_guide.html#KML
http://www.google.com/earth/index.html
https://subversion.dfki.de/nifti/code/ros/stacks/nifti_vision/trunk/googlemaps
http://googleblog.blogspot.com/2009/02/see-where-your-friends-are-with-google.html
http://www.ros.org/wiki/Topics
http://www.ros.org/wiki/Nodes
http://www.nifti.eu/news/the-new-nifti-robot-platform
http://code.google.com/apis/fusiontables/?ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__utmb=1.1.10.1316475456&__utmc=1&__utmx=-&__utmz=1.1316475456.1.1.utmcsr=google%7Cutmccn=(organic)%7Cutmcmd=organic%7Cutmctr=google%20fusion%20tables&__utmv=-&__utmk=123550731
http://code.google.com/apis/fusiontables/?ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__utmb=1.1.10.1316475456&__utmc=1&__utmx=-&__utmz=1.1316475456.1.1.utmcsr=google%7Cutmccn=(organic)%7Cutmcmd=organic%7Cutmctr=google%20fusion%20tables&__utmv=-&__utmk=123550731
http://code.google.com/apis/fusiontables/?ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__utmb=1.1.10.1316475456&__utmc=1&__utmx=-&__utmz=1.1316475456.1.1.utmcsr=google
http://code.google.com/apis/fusiontables/?ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__utmb=1.1.10.1316475456&__utmc=1&__utmx=-&__utmz=1.1316475456.1.1.utmcsr=google
http://code.google.com/apis/fusiontables/?ft_source=tour_nav&__utma=1.1220465619.1316475456.1316475456.1316475456.1&__utmb=1.1.10.1316475456&__utmc=1&__utmx=-&__utmz=1.1316475456.1.1.utmcsr=google
http://www.opengeospatial.org/standards/kml/
http://code.google.com/apis/kml/documentation/kmlreference.html
http://code.google.com/apis/maps/index.html
http://www.nifti.eu/mission
http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android
http://www.willowgarage.com/blog/2011/05/12/google-io-2011-cloud-robotics-ros-java-and-android
http://www.willowgarage.com/pages/about-us/overview
http://www.ros.org/wiki/ROS
http://cmp.felk.cvut.cz/

	1 Abstract
	2 Introduction
	3 Theory and Methodology and Resources
	3.1 Resources
	3.2 Kmlexport node
	3.2.1. User documentation
	3.2.2. Technical documentation

	3.3 Googlemaps node
	3.3.1. User documentation
	3.3.2. Technical documentation

	4 Evaluation and Results
	4.1 Kmlexport node
	4.2 Googlemaps node

	5 Discussion
	6 Conclusion
	7 Appendices
	A headers
	kmllogger.cpp
	googlemaps.py

	B launch file

	References

