
Lecture 4: Search in Structured States
(Constraint Satisfaction Programming and

Planning)

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

bosansky@fel.cvut.cz

March, 2025

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 41

Overview

What we have covered so far:

formal state representation

uninformed search

informed search and heuristics

We have not assumed that states of the world have some specific
structure.

Question

What if we restrict the structure of the states?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 41

Overview

Question

What if we restrict the structure of the states?

– we lose generality (not every problem could be represented)

+ we gain performance (we will be able to solve much larger
problems)

+ we will not have to come up with domain-specific heuristics

We can identify and solve (exactly!) instances of a subclass of
problems and improve scalability by several orders of magnitude
compared to standard search algorithms.

We start with Constraint Satisfaction Programming (CSPs) and
then move to Logic and Classical Domain-Independent Planning.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 41

Constraint Satisfaction Problems (CSPs)

CSPs are defined by 3 finite sets:

variables (x1, x2, . . . , xn)

domains (Di for each variable xi)

constraints (c1, c2, . . . , cm)

A constraint is specified as a tuple of

subset of variables xj1 , . . . , xjl
all allowed joint assignments (l-tuples from Dj1 , . . . ,Djl)

State: (partial) assignment of values to variables

Action: assigning particular values to some variable

Goal: find such an assignment values to variables that satisfy all
the constraints

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 41

Constraint Satisfaction Problems – Examples

Many problems can be repre-
sented as CPSs. These include
known puzzles:

Sudoku,

Cryptaithmetic,

essential NP problems:

SAT,

Graph Coloring,

and many practical problems:

Scheduling

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 41

N-Queens Example

Consider an N-Queens problem: Place on a chessboard of size
N × N squares N queens so that no two queens threaten each
other. For N = 4:

What would be the state representation?

N coordinates (one tuple of coordinates
for each queen)

N numbers (every queen has to be in a
different column, we can only represent
rows)

Action changes position of one (or more) queen.

Small differences from previous (general) problems:

there is no start state (we can start from any state), hence

the path to the goal state is not interesting, only the goal
state itself

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 41

N-Queens Example as a CSP

We can formulate N-Queens problem as a CSP:

variables: x1, . . . , xN (one variable for each queen, queen i is
placed in the i-th column)

domains: Di = {1, . . . ,N} (the row in which the queen is
placed)

constraints:

xi 6= xj ∀i , j ∈ {1, . . . ,N}, i 6= j
(some solvers support global constraint
alldifferent(x1, . . . , xN))
|xi − xj | 6= |i − j | ∀i , j ∈ {1, . . . ,N}, i 6= j

Question

How do we search for a solution?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 41

Search Tree for CSPs

We use (uninformed) search as we know it (for now) and represent
the search space as a search tree.

What are the nodes and actions in the search tree for a CSP?

Nodes in the search tree – (partial) assignment of values to
variables,

Edges – choosing an unassigned variable and assign a value
to this variable.

During the assignment, the
algorithm must check whether
the assignment does not violate
constraints.

If there is no satisfying assign-
ment, the algorithm backtracks.

x_1 = ?
x_2 = ?
x_3 = ?
x_4 = ?

x_1 = 1
x_2 = ?
x_3 = ?
x_4 = ?

x_1 = 2
x_2 = ?
x_3 = ?
x_4 = ?

x_1 = 3
x_2 = ?
x_3 = ?
x_4 = ?

x_1 = 4
x_2 = ?
x_3 = ?
x_4 = ?

x_1 = 1
x_2 = 3
x_3 = ?
x_4 = ?

x_1 = 1
x_2 = 4
x_3 = ?
x_4 = ?

x_1 = 1
x_2 = 4
x_3 = 2
x_4 = ?

....

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 41

Standard Representation of CSPs

We now move to specific CSP algorithms. Many of them assume
only binary constraints.

Question

Is it a problem? Is it a subclass of CSP problems?

Not really, we can reformulate any k-ary constraint as a set of
binary constraints:

Assume there is a constraint c involving k variables. Let Γ be
the set of all k-tuples that satisfy this constraint.

Create a new variable xc with the domain Γ and create k
binary constraints with involved k variables, such that i-th
item of the value of xc equals to value of the variable i .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 41

Standard Representation of CSPs – Visualization

Having only binary constraints, we can visualize CSPs as graphs:

variables are vertices in the graph,

constraints are edges in the graph.

There is an edge connecting two vertices if there is a constraint
between these variables.

x_1 = {1,2,3,4} x_2 = {1,2,3,4}

x_3 = {1,2,3,4} x_4 = {1,2,3,4}

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 41

CSP Search and Propagating Constraints

Can we utilize the fact that we have a specific structure of the
problem?

The simple search checks the constraints only in a passive way.

We can propagate the values to other variables. Every time we set
a value for some variable, we can filter out values of other variables
that do not satisfy constraints → forward checking:

x_1 = {1} x_2 = {1,2,3,4}

x_3 = {1,2,3,4} x_4 = {1,2,3,4}

→

x_1 = {1} x_2 = {3,4}

x_3 = {2,4} x_4 = {2,3}

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 41

CSP Search and Propagating Constraints

Assume the search algorithm selects a value for variable xi . Now:

for every other variable xj such that there is a constraint cij
between xi and xj , we evaluate all available values from Dj

and keep only those that satisfy cij

How is the forward checking integrated into the search algorithm?

the algorithm keeps available values for every variable

if for any variable its domain is empty after the forward
checking, the algorithm immediately backtracks

First heuristic → minimal remaining value (MRV).

So far, there was no rule which variable to choose next in the
search tree. MRV heuristics is a fail-fast heuristic that can quickly
prune out dead-ends.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 41

Search with Forward Checking

pseudocode of the search algorithm:

if all variables are assigned then return current assignment
(solution)

xi ← ChooseVariable(X ,D)

for each v ∈ Di

assign xi = v
valid = ForwardChecking(X ,D, i , v)
if valid then search(X ,D)
undo local assignments

return false

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 41

Towards a Better Use of Constraints

Forward checking ensures that there are supporting values in
domains of other involved constraints.

The algorithm removes those values that do not satisfy the
constraints.

But this can violate some other constraints ... Is there a way we
can ensure that every constraint can be satisfied (termed
consistent)?

Yes! We can have an algorithm that makes every edge (constraint)
consistent.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 41

Arc Consistency

Making one edge (arc) cij consistent:

deleted = false

for each v ∈ Di

supported = false
for each v ′ ∈ Dj

if cij(v , v
′) then supported = true

if not supported then
remove v from Di

deleted = true

return deleted

The procedure checks one constraint (in a directed manner) and
returns true if some value was removed from domain Di .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 41

Arc Consistency – AC-3

Assume the algorithm has set value for variable xi . We need to
make consistent all incoming edges to node i (constraints that
depend on this selected value). Next, if some value is removed
from any variable xj , we need to do the same for node j .

We will have a queue Q of all edges to make consistent:

Q = {(j , i) | cji ∈ C , i 6= j}
while Q is not empty

(a, b) = pop(Q)
if MakeConsistent(a, b) then

append(Q, {(k , a) | cka ∈ C , k 6= a})
This algorithm is known as AC-3.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 41

AC3 Algorithm

Question

Does AC3 solve everything? Do we still need search?

Unfortunately, AC3 is not able to guarantee there exists a solution.
If AC3 prunes out some domain, the search algorithm can safely
backtrack. Otherwise, the search needs to continue.

x_1 = {1,2} x_2 = {1,2}

x_3 = {1,2}

!=

!=
!=

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 41

Other Interesting Search Improvements in CSP

Least Constraining Value
Another heuristic for CSPs – among all the values to be assigned
to a variable, choose such that supports the most other values.

Backjumping
Inability of choosing valid value for one variable can be caused by a
choice of a variable up in the search tree. → The algorithm can
identify which variables cause the conflict and can backtrack
immediately to this conflicting variable (jumping back).

Dynamic Backtracking
In backjumping, the assignment between two conflicting variables
is lost if we jump (even if it was a good one) → dynamic
backtracking can dynamically choose which variable to assign (or
re-assign) so that partially valid solutions are not lost.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 41

From CSP to Planning

Formulating a problem as a
CSP can be too restrictive

pMotivation example – monkey and banana

Vladimir Lifschitz: Planning course, The University of Texas at Austin.

� �

What about a more general state representation? First-Order Logic
(Situation Calculus):

facts hold in particular situations (≈ world state histories)
predicates either rigid (eternal) or fluent (changing)
fluent predicates include a situation argument

e.g., agent(monkey , at ban, now), term now denotes a situation
rigid predicates hold regardless of a situation

e.g., walks(monkey), moveable(box)
situations are connected by the result function

if s is a situation than result(s, a) is also a situation

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 41

Keeping track of evolving situations

agent(agent name, agent position, stands on, situation)
object(object name, object position,who stands, situation)

pKeeping track of change

� �

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 41

Description and application of actions

agent(agent name, agent position, stands on, situation)
object(object name, object position,who stands, situation)

Action “effect” axiom for walk(X ,P1,P2):

∀X ,P1,P2,Z (agent(X ,P1, ground ,Z) ∧ walks(X)

→ agent(X ,P2, ground , result(Z ,walk(X ,P1,P2)))

Action “effect” axiom for climb(X):

∀X ,P,Z (agent(X ,P, ground ,Z) ∧ object(box ,P, none,Z)

→ agent(X ,P, box , result(Z , climb(X)))

∧ object(box ,P,X , result(Z , climb(X)))

Goal of planning: logical representation of the desired state

G ≡ ∃Z agent(monkey ,middle, box ,Z)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 41

Domain Independent Automated Planning

While logic reasoning can work, the scalability is limited.

Is there a formal state representation specifically designed for
solving deterministic sequential single-agent problems?

Yes, domain-independent (classical) planning – a subfield of AI
dealing (mainly) with

representation languages with reasonable tradeoffs of expressivity
and efficiency
algorithms for finding plans for problems expressed in these
languages

(The following slides are heavily based on Carmel Domshlak’s slides)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 41

Planning problems

Automated
(AI) Planning

Introduction

What is
planning?

Problem classes

Dynamics

Observability

Objectives

Transition
systems

Representation

Towards
Algorithms

Summary

Planning Problems

What is in common?

All these problems deal with action selection or control

Some notion of problem state

(Often) specification of initial state and/or goal state

Legal moves or actions that transform states into other
state

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 41

Succinct representation of transition systems

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

Succinct representation of transition systems

More compact representation of actions than as relations
is often

possible because of symmetries and other regularities,
unavoidable because the relations are too big.

Represent different aspects of the world in terms of
different state variables. A state is a valuation of state
variables.

Represent actions in terms of changes to the state
variables.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 24 / 41

Planning Languages

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

Planning Languages

Key issue

Models represented implicitly in a declarative language

Play two roles

specification: concise model description

computation: reveal useful info about problem’s structure

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 25 / 41

The STRIPS language

Automated
(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

The STRIPS language
Useful fragment of SAS

A problem in STRIPS is a tuple 〈P,A, I,G〉
P stands for a finite set of atoms (boolean vars)

I ⊆ P stands for initial situation

G ⊆ P stands for goal situation

A is a finite set of actions a specified via pre(a), add(a),
and del(a), all subsets of P

States are collections of atoms

An action a is applicable in a state s iff pre(a) ⊆ s
Applying an applicable action a at s results in
s′ = (s \ del(a)) ∪ add(a)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 26 / 41

Why STRIPS is interesting?

STRIPS operators are particularly simple, yet expressive
enough to capture general planning problems.

In particular, STRIPS planning is no easier than general
planning problems.

Many algorithms in the planning literature are easier to
present in terms of STRIPS.

(The following example is based on Antonin Komanda’s slides)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 27 / 41

Sokoban - Example planning domain

State representation:
positions: a1, ... a6,...

f1, ..., f2

box_at(P), free(P)

player_at(P)

adjacent(P1,P2)

adjacent2(P1,P2)

Operators (Actions):
move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

...

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 28 / 41

Grounding of Actions

Operators (Actions):

move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

add: player_at(Y)

box_at(Z)

free(Y)

del: player_at(X)

box_at(Y)

free(Z)

Grounding:

move_a1_a2

pre: player_at_a1, adjacent_a1_a2, free_a2

add: player_at_a2

del: player_at_a1

move_a2_a3

pre: player_at_a2, adjacent_a2_a3, free_a3

add: player_at_a3

del: player_at_a2

...

push_a1_a2_a3

pre: player_at_a1, box_at_a2, free_a3

adjacent_a1_a2, adjacent_a2_a3,

adjacent_a1_a3

add: player_at_a2, box_at_a3, free_a2

del: player_at_a1, box_at_a2, free_a3

...

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 29 / 41

STRIPS Representation of Sokoban
Automated

(AI) Planning

Introduction

What is
planning?

Transition
systems

Representation

State variables

Tasks

Action
Languages

Towards
Algorithms

Summary

The STRIPS language
Useful fragment of SAS

A problem in STRIPS is a tuple 〈P,A, I,G〉
P stands for a finite set of atoms (boolean vars)

I ⊆ P stands for initial situation

G ⊆ P stands for goal situation

A is a finite set of actions a specified via pre(a), add(a),
and del(a), all subsets of P

States are collections of atoms

An action a is applicable in a state s iff pre(a) ⊆ s
Applying an applicable action a at s results in
s′ = (s \ del(a)) ∪ add(a)

P = {player_at_a2, ..., player_at_d3,

box_at_a2, ..., box_at_d3,

free_a2, ..., free_d3,

adjacent_a2_b2, ..., adjacent_d2_d3,

adjacent2_a2_c2, ..., adjacent2_d1_d3 }

I = {player_at_b2, box_at_c1, box_at_c2,

free_a2, free_b1, ..., free_d3,

adjacent_a2_b2,..., adjacent_d2_d3, adjacent2_a2_c2,..., adjacent2_d1_d3}

G = {box_at_a2, box_at_d1}

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 30 / 41

Planning in Strips

We can just use A*:

State: a set of true atoms

Applicable actions: based on preconditions

Action application: add the “add” atoms and delete the “del” atoms

(No need for separate simulator implementation)

Problem structure allows automated construction of heuristics!

Allows exploring general heuristics domain independently

Simple heuristic: h(s) = |G \ s|
Solve a suitable simpler version of the problem

Abstraction: solve a smaller problem

e.g., completely remove a predicate from the problem

Landmarks

Relaxation: solve a less constraint problem

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 31 / 41

Relaxation heuristics

Whole sub-field of planning in STRIPs and beyond
Automated

(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxations for planning

Relaxation is a general technique for heuristic design:

Straight-line heuristic (route planning): Ignore the fact
that one must stay on roads.
Manhattan heuristic (15-puzzle): Ignore the fact that one
cannot move through occupied tiles.

We want to apply the idea of relaxations to planning.

Informally, we want to ignore bad side effects of applying
actions.

Example (8-puzzle)

If we move a tile from x to y, then the good effect is
(in particular) that x is now free.
The bad effect is that y is not free anymore, preventing us for
moving tiles through it.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 32 / 41

Relaxed planning tasks in STRIPS

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxed planning tasks: idea

In STRIPS, good and bad effects are easy to distinguish:

Effects that make atoms true are good
(add effects).

Effects that make atoms false are bad
(delete effects).

Idea for the heuristic: Ignore all delete effects.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 33 / 41

Relaxed planning tasks in STRIPS

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

The relaxation
lemma

Greedy algorithm

Optimality

Discussion

Relaxation
Heuristics

Relaxed planning tasks

Definition (relaxation of actions)

The relaxation a+ of a STRIPS action
a = 〈pre(a), add(a), del(a)〉 is the action
a+ = 〈pre(a), add(a), ∅〉.

Definition (relaxation of planning tasks)

The relaxation Π+ of a STRIPS planning task Π = 〈P,A, I,G〉
is the planning task Π+ := 〈P, {a+ | a ∈ A}, I, G〉.

Definition (relaxation of action sequences)

The relaxation of an action sequence π = a1 . . . an is the action
sequence π+ := a1

+ . . . an
+.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 34 / 41

Relaxation of actions in Sokoban

Representation → Search + Heuristics
Relaxation

move(X,Y):

pre: player_at(X)

adjacent(X,Y)

free(Y)

add: player_at(Y)

del: player_at(X)

push(X, Y, Z):

pre: player_at(X)

box_at(Y)

free(Z)

adjacent(X,Y)

adjacent(Y,Z)

adjacent2(X,Z)

add: player_at(Y)

box_at(Z)

free(Y)

del: player_at(X)

box_at(Y)

free(Z)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 35 / 41

Building Relaxed Planning Graph

Solving a relaxed problem gives us a heuristic estimate h+ of the
original problem.

However, computing the optimal relaxed plan is still NP hard

But we can do something simpler

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Graphical “interpretation”: Relaxed planning
graphs

Build a layered reachability graph P0, A0, P1, A1, . . .

P0 = {p ∈ I}
Ai = {a ∈ A | pre(a) ⊆ Pi}

Pi+1 = Pi ∪ {p ∈ add(a) | a ∈ Ai}

Terminate when G ⊆ Pi
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 36 / 41

Example

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Running example

I = {a = 1, b = 0, c = 0, d = 0, e = 0, f = 0, g = 0, h = 0}
a1 = 〈{a}, {b, c}, ∅〉
a2 = 〈{a, c}, {d}, ∅〉
a3 = 〈{b, c}, {e}, ∅〉
a4 = 〈{b}, {f}, ∅〉
a5 = 〈{d}, {g}, ∅〉

G = {c = 1, d = 1, e = 1, f = 1, g = 1}

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 37 / 41

Relaxed Planning Graph

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Running example: Relaxed planning graph

a0

b0

c0

d0

e0

f0

g0

h0

a1

b1

c1

d1

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f3

g3

a1

a2

a3

a4

a5

a6

G

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 38 / 41

Domain Independent Automated Planning

Forward cost heuristic hmax

Propagate cost layer by layer from start to goal

At actions, take maximum cost of achieving preconditions +1

At propositions, take the cheapest action to achieve it

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 39 / 41

Computing heuristic hmax

Automated
(AI) Planning

Introduction

Obtaining
heuristics

Relaxation
heuristics

Relaxation
Heuristics

Template

hmax
hadd
hFF
Comparison &
practice

Running example: hmax

a0

b0

c0

d0

e0

f0

g0

h0

a1

b1

c1

d1

e1

f1

g1

h1

a2

b2

c2

d2

e2

f2

g2

h2

a3

b3

c3

d3

e3

f3

g3

h3

a1

b1

c1

a1

a2

b2

c2

d2

e2

f2

a1

a2

a3

a4

a3

b3

c3

d3

e3

f3

g3

a1

a2

a3

a4

a5

a6

G

0

1

0

1

1

1

2

2

2

0

1

1

2

2

2

1

2

2

2

3

3

0

1

1

2

2

2

3

3

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 40 / 41

Summary

This concludes search in single-agent deterministic problems.

Next-up: reinforcement learning, games, dealing with uncertainty.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 41 / 41

