
Lecture 11: Sequential Decisions with
Partial Information (POMDPs)

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz, bosansky@fel.cvut.cz

April, 2025

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 28

What we already know?

What we already covered:

finding optimal plan

search-based (A*) / learning-based (RL) / sampling-based
(MCTS) approaches

uncertainty

The main formal model for us was Markov Decision Process
(MDP).

Unfortunately, the world is not perfect – agents often do not have
perfect information about the true state of the environment
→ Partially Observable MDPs (POMDPs).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 28

Definition POMDPs

Recall the definition of POMDPs – We have a finite sets of states
S, rewards R, and actions A. The agent interacts with the
environment in discrete steps t = 0, 1, 2, At each timestep, the
agent has a belief – a probability distribution over states that
expresses the (subjective) likelihood about the current states.

The agent receives observations from a finite set O that affect
the belief. The agent starts from an initial belief and based on
actions and observations, it updates its belief. Given the current
belief b : S → [0, 1] and some action a ∈ A and received
observation o ∈ O, the new belief is defined as:

b(s ′) = µO(o|s ′, a) ·
∑
s∈S

Pr(s ′|s, a) · b(s)

where µ is a normalizing constant.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 28

POMDP – Example

#
G
#
↓ # #
#
#

The robot can now perceive only its surroundings but does not
know the exact position in the maze. States and actions remain
the same.

s = (X ,Y , d ,G)

actions = (move forward, move backward, turn left,
turn right)

Observations are all possible combinations of walls / free squares
in the 4-neighborhood (in front, right, behind, left):

(#,#,#,#), (#,#,#,), . . .

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 28

Beliefs in POMDPs

So how exactly we compute the beliefs1:

a = forward, o = (#, , ,#)
current beliefs bt new beliefs bt+1

#
G 0.25 0.25
#
#
0.25 0.25
#

→

#
G 0.5
#
#
0.5
#

for s ′ = (1, 1, <,), it holds

b′
t+1(s

′) = O(o|s ′, a) · Pr(s ′|a, (2, 1, <,)) · bt((2, 1, <,))

b′
t+1(s

′) = 1 · 1 · 0.25

and then bt+1(s
′) = µb′

t+1(s
′) where µ = 1

b′t+1((1,1,<,))+b′t+1((4,4,>,))

1Coordinates (0,0) are in the bottom left corner.
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 28

How to act optimally in MDPs

Recall a value function for an MDP and a policy π

vπ : S → R

is a function assigning each state s the expected return
vπ(s) = Eπ G0 obtained by following policy π from state s.

Optimal policies share the same optimal state-value function:

v∗(s) = max
π

vπ(s) for all s ∈ S

Any policy that is greedy with respect to v∗ is an optimal policy.

π∗(s) = arg max
a

∑
s′,r

p(s ′, r |s, a)
[
r + γv∗(s

′)
]

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 28

How things change for POMDPs?

Which action is optimal depends on the belief over states:

#
G > (0.5)
#
#
< (0.5)
#

Consider 2 actions – move backward and turn right

move backward is better for the state (4, 4, >,)

turn right is better for the state (1, 1, <,)

The value of each action depends on the exact belief → value
function also depends on beliefs.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 28

Value function for POMDPs

A value function for a POMDP and a policy π

vπ : ∆(S)→ R

Can we update Bellman equation to use beliefs? Yes!

v∗(b) = max
a

∫
p(b′, r |b, a)

[
r + γv∗(b

′)
]
db′

... the “only problem” is that b is a continuous variable
→ computing optimal value function in this form is not practical.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 28

Representation of Value Function

Using beliefs, we have formulated an MDP with a continuous
set of states.

Discretization of beliefs is not very practical due to high dimension
(|S|).

Consider the Bellman equation again – what is our goal?

v∗(b) = max
a

∫
p(b′, r |b, a)

[
r + γv∗(b

′)
]
db′

Find the best action (and value) for each belief point.

There is infinitely many belief points, but the set of actions A is
finite!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 28

Representation of Value Function – α vectors

If we fix an action a ∈ A, the value function (for that action) is a
linear function in the current belief. These linear functions are
called α-vectors.

For each belief point, we take the best action hence we maximize
over all α-vectors:

v(b) = max
α

∑
s∈S

α(s) · b(s)

α-vectors are in fact more general → they represent expected
value for a policy (contingency plan consisting of multiple steps).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 28

Using α-vectors in value iteration

Using α-vectors corresponding to the value functions of currently
considered policies, we can compute new value (next iteration):

vt+1(b) = max
a

∑
o∈O

max
α′∈vt

∑
r,s,s′

µp(s ′, r |s, a)b(s)O(o|s ′, a)
(
r + γα′(s ′)

)
... but how do we construct α-vectors from vt+1?

1 assume there are α-vectors α′ representing values of policies
in step t

2 in step t + 1, we choose some action and then, based on the
observation, we follow with some of the policy corresponding
to α′ from vt (different observation leads to a different belief)

3 for example, choose action a3 and then

if o2 is received, use value of α′
4 (i.e., this value is achievable

via some policy corresponding to this α-vector)
if o1 is received, use value of α′

2

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 28

Tiger example

Let’s consider the best-known POMDP example – a tiger problem:
There are 2 doors hiding a treasure or a tiger. The agent does not
know where is the tiger and where is the treasure. The agent can
gather observations (listen) or open one of the doors.

states – {tiger left(TL), tiger right(TR)}
actions – {open left, open right, listen}
observations – {hearTL, hearTR}
rewards –

−1 for any listening action (in all states)
+10 for opening the door with treasure
−100 for opening the door with tiger

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 28

Tiger example

states – {tiger left(TL), tiger right(TR)}
actions – {open left, open right, listen}
observations – {hearTL, hearTR}
rewards –

−1 for any listening action (in all states)
+10 for opening the door with treasure
−100 for opening the door with tiger

initial belief is uniform – b0(TL) = b0(TR) = 0.5

transition dynamics –

performing action listen does not change the state
opening a door “restarts” the problem (i.e., p(s ′|s, a) = 0.5 for
both states s ′ ∈ {TL,TR}).

observation probabilities –

listening action generates observation hearTL/TR with a 15%
error – i.e., agent chooses action a = listen, then
O(hearTR|a,TR) = 0.85 and O(hearTR|a,TL) = 0.15.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 28

Tiger example

What are the optimal actions (1-step policy)?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 28

Tiger example

Choosing action listen is not sufficient → what should we do
next?

Depending on the observation, the belief will change:

assume b0(TR) = b0(TL) = 0.5, a = listen, and o = hearTR

now b1(TR) = 0.5·0.85
0.5·0.85+0.5·0.15 = 0.85

Since 0.85 ∈ [0.1, 0.9], after one observation the next optimal
action is still listen.

In general, the chosen actions in policies depend on received
observation, for example (a 2-step policy):

listen
if (observation is hearTR → open left)
else if (observation is hearTL → listen)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 28

Tiger example

What do the α-vectors corresponding to 2-step policies look like?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 28

Exact value iteration in POMDPs

In exact (full) value iteration in POMDPs, |Vt | = |A| · |Vt−1||O|
new α-vectors are generated in each step of the algorithm.

It is clear that such approach will not scale well. Pruning
dominated α-vectors is possible but does not solve the issue.

Observation

We do not need to compute all α-vectors – large portion of belief
space is (often) not reached hence not relevant for solving the
problem.

We can keep only a bounded number of belief points and for each
belief point we keep 1 (the best) α-vector.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 28

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set
of belief points:

instead of adding all α-vectors, only the α-vectors that are
optimal in some of the belief points from B are kept,

Comparison of generated α-vectors for full VI and PBVI for tiger example after

30 iterations (from slides of M. Herrmann, RL 13).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 28

Point-based updates and point-based value iteration
(PBVI)

Let B = {b1, b2, . . .} be a set of |B| belief points. Point-based
value iteration performs Bellman update only for this limited set of
belief points:

the set of belief points B can correspond to a uniform
coverage of the belief space or the points can focus on more
relevant parts of the belief space

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 28

Characteristics of PBVI

Advantages of PBVI:

removes exponential complexity (the number of alpha vectors
is bounded)

a practical algorithm for solving POMDPs

Disadvantages of PBVI:

it is not clear how far from the optimum is the current solution

the set of belief points needs to be updated / maintained

it is not clear which part of the belief space to explore

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 28

Heuristic Search Value Iteration (HSVI)

Approximates the value function with 2 approximate value
functions:

lower bound – a set of alpha vectors corresponding to
infinite-step policies

upper bound – a set of points overestimating values for each
belief point

Steps of the algorithm:

1 initialization of lower bound and upper bound approximate
functions

2 selecting belief points to update using a forward search
(selecting the best action to explore most promising space of
belief points)

3 performing point-based updates for both approximate
functions

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 28

Heuristic Search Value Iteration (HSVI)

Question

How to initialize lower / upper bound value function
approximations?

lower bound – choosing some action in all belief points all the
time is clearly a lower bound on the expected reward

upper bound – solving a simplified problem → solving an
MDP for each state s ∈ S

Updates:

lower bound – point-based value updates (only the set of
belief points is not bounded)

upper bound – compute a lower convex envelope of a set of
points in the upper bound and then use point-based value
updates

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 28

Heuristic Search Value Iteration (HSVI)

Updates:

lower bound – point-based value updates (only the set of
belief points is not bounded)

upper bound – compute a lower convex envelope of a set of
points in the upper bound and then use point-based value
updates

After an update, a new α vector is added into the lower bound
and/or a new point is added into the upper bound.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 28

Heuristic Search Value Iteration (HSVI)

Selection of the belief points to explore:

the algorithm explores the most promising actions →
the algorithm selects the action based on the upper bound
approximation
see the connection with search-based methods → the upper
bound is an optimistic evaluation of each belief point
the idea is either to (1) prove that the most-promising action
actually leads to this reward (thus increase the lower bound) or
(2) prove that the reward was overestimated and thus decrease
the upper bound for relevant belief points

the updates for the same action is performed for lower bound
approximation

This is a very common structure of AI algorithms – upper bound
drives the search, lower bounds maintains the best-found solution.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 24 / 28

Scaling up – Monte Carlo for POMDPs

Monte Carlo Tree Search (MCTS) methods were discussed in the
context of two player games.

However, we can use the same ideas for solving MDPs and also
POMDPs → POMCP algorithm.

Question

How to construct a Monte Carlo tree?

In games (and also for MDPs), there are perfectly observable
states (histories of actions) where a bandit algorithm (UCB) is
used. But states are not observable in POMDPs ...

Instead, we can use action-observation histories.

the agent is starting in some initial belief

executing some action generates possible observations
(according to a known probability distribution)

receiving observation updates belief in a well-defined manner
(computing a belief update)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 25 / 28

POMCP – Monte Carlo for POMDPs

Why action-observation histories are sufficient?

the agent is starting in
some initial belief

executing some action
generates possible
observations (according to
a known probability
distribution)

receiving observation
updates belief in a
well-defined manner
(computing a belief update)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 26 / 28

POMCP – Monte Carlo for POMDPs

Where is the catch?

Bayes update of belief points can be too computationally expensive
for large domains (with many states and/or observations).

The belief update can be done using particle filtering:

execute K random trials (randomly choosing a true world
state based on current belief, executing an action, determining
the next state)

this way we can approximate the next belief points (with
probabilities of receiving an observation)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 27 / 28

POMDPs – Key Takeaways

Solution of the problem (strategy) is a contingency plan

agent needs to know which action to take in each belief, agents
does not know which observation is going to be received

Discretization via finite action sets

Key ideas from basic models (deterministic / stochastic
MDPs) work for POMDPs as well

The technical realization is more complex
Search – combination of LB best solution with valid UB
estimates in HSVI
MCTS algorithm on action-observation histories that construct
the tree

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 28 / 28

