
Lecture 8: MCTS and AlphaGo

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

viliam.lisy@fel.cvut.cz

April, 2024

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 23



Remind the test!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 23



Plan of today’s lecture

1 Monte Carlo Tree Search

2 Overview of basic improvements

3 The challenge of computer Go

4 AlphaGo

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 23



Recap.: Solving the Two-Player Games

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Similarly to deterministic uninformed
search, we can use a depth-first
search algorithm. For a history h:

1 if h is a terminal history
(h ∈ Z ), then return u(z),

2 if h is a decision node, evaluate
all children va = search(A(h))
and

1 if h ∈ H1, return maxa∈A(h) va
2 if h ∈ H2, return mina∈A(h) va

This baseline algorithm is known as minimax algorithm or simply a
backward induction in two-player perfect information games.

The utility of player 1 when both players play optimally is called
the value of the game.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 23



Games are BIG

The number of reachable states:

Chess: ≈ 1045 1045 1023

Go: ≈ 10170 10170 1085

Can’t we just prune most of the states out?

Theorem

For a game with branching factor b and depth d , αβ-search will
evaluate at least bd/2 =

√
bd nodes.

The compute capacity of 100 largest clusters in the world
combined in Nov 20231: 6.7× 1018 FLOPS

With 10 FLOPS per state, chess would need > 106s ≈ 12 days.
For Go, it is ≈ 1060 years. (The universe is ≈ 14× 109 years)

1https://www.top500.org/lists/top500/list/2023/11/
Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 23

https://www.top500.org/lists/top500/list/2023/11/


Depth-limited game solving

Who will win?
Still 10170

nodes!

h

Root

Terminal nodes

Sometimes very hard to make a good heuristic evaluation.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 23



Monte Carlo Tree Search

Idea:

1 Instead of evaluation function, use random roll-outs
(simulations) of the rest of the game

2 Store detailed statistics only in relevant parts of the game tree

(Image from Chaslot et al. 2007)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 23



Monte Carlo Tree Search
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 1, MARCH 2012 10

Fig. 3. Asymmetric tree growth [68].

any moment in time; allowing the algorithm to run for
additional iterations often improves the result.

It is possible to approximate an anytime version of
minimax using iterative deepening. However, the gran-
ularity of progress is much coarser as an entire ply is
added to the tree on each iteration.

3.4.3 Asymmetric

The tree selection allows the algorithm to favour more
promising nodes (without allowing the selection proba-
bility of the other nodes to converge to zero), leading
to an asymmetric tree over time. In other words, the
building of the partial tree is skewed towards more
promising and thus more important regions. Figure 3
from [68] shows asymmetric tree growth using the BAST
variation of MCTS (4.2).

The tree shape that emerges can even be used to gain a
better understanding about the game itself. For instance,
Williams [231] demonstrates that shape analysis applied
to trees generated during UCT search can be used to
distinguish between playable and unplayable games.

3.5 Comparison with Other Algorithms

When faced with a problem, the a priori choice between
MCTS and minimax may be difficult. If the game tree
is of nontrivial size and no reliable heuristic exists for
the game of interest, minimax is unsuitable but MCTS
is applicable (3.4.1). If domain-specific knowledge is
readily available, on the other hand, both algorithms
may be viable approaches.

However, as pointed out by Ramanujan et al. [164],
MCTS approaches to games such as Chess are not as
successful as for games such as Go. They consider a
class of synthetic spaces in which UCT significantly
outperforms minimax. In particular, the model produces
bounded trees where there is exactly one optimal action
per state; sub-optimal choices are penalised with a fixed
additive cost. The systematic construction of the tree

ensures that the true minimax values are known.12 In
this domain, UCT clearly outperforms minimax and the
gap in performance increases with tree depth.

Ramanujan et al. [162] argue that UCT performs
poorly in domains with many trap states (states that lead
to losses within a small number of moves), whereas iter-
ative deepening minimax performs relatively well. Trap
states are common in Chess but relatively uncommon
in Go, which may go some way towards explaining the
algorithms’ relative performance in those games.

3.6 Terminology

The terms MCTS and UCT are used in a variety of
ways in the literature, sometimes inconsistently, poten-
tially leading to confusion regarding the specifics of the
algorithm referred to. For the remainder of this survey,
we adhere to the following meanings:
• Flat Monte Carlo: A Monte Carlo method with

uniform move selection and no tree growth.
• Flat UCB: A Monte Carlo method with bandit-based

move selection (2.4) but no tree growth.
• MCTS: A Monte Carlo method that builds a tree to

inform its policy online.
• UCT: MCTS with any UCB tree selection policy.
• Plain UCT: MCTS with UCB1 as proposed by Kocsis

and Szepesvári [119], [120].
In other words, “plain UCT” refers to the specific algo-
rithm proposed by Kocsis and Szepesvári, whereas the
other terms refer more broadly to families of algorithms.

4 VARIATIONS

Traditional game AI research focusses on zero-sum
games with two players, alternating turns, discrete ac-
tion spaces, deterministic state transitions and perfect
information. While MCTS has been applied extensively
to such games, it has also been applied to other domain
types such as single-player games and planning prob-
lems, multi-player games, real-time games, and games
with uncertainty or simultaneous moves. This section
describes the ways in which MCTS has been adapted
to these domains, in addition to algorithms that adopt
ideas from MCTS without adhering strictly to its outline.

4.1 Flat UCB

Coquelin and Munos [68] propose flat UCB which effec-
tively treats the leaves of the search tree as a single multi-
armed bandit problem. This is distinct from flat Monte
Carlo search (2.3) in which the actions for a given state
are uniformly sampled and no tree is built. Coquelin
and Munos [68] demonstrate that flat UCB retains the
adaptivity of standard UCT while improving its regret
bounds in certain worst cases where UCT is overly
optimistic.

12. This is related to P-game trees (7.3).

(Image from Browne et al. 2012)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 23



Monte Carlo Tree Search - Demonstration

Selection

Expansion

Simulation

Backpropagation

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 23



MCTS Selection

We want to explore the more promising actions more often
We want to learn which actions are the most promising

Does it sound familiar?

Exploration vs. exploitation dilemma
Any algorithm for the multi-arm bandit problem can be used
MCTS + UCB = UCT – the most popular MCTS variant

At(s)
.
= argmax

a

[
Qt(s, a) + c

√
logNt(s)

Nt(s, a)

]
Where s is the node in the tree where we perform the selection.

Progressive strategies start with domain knowledge and gradually
change to learned knowledge.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 23

https://link.springer.com/content/pdf/10.1007/11871842_29.pdf


MCTS Expansion

The part of the search space storing the statistics is expanded

all actions may be added

a single state-action may be added

a node may be expanded only after visited multiple times

Progressive widening

games may have many actions – Go (192), Arrimaa (≈ 20k)

a single state-action may be added at a time

PW:

start with few (heuristically chosen?) actions initially
add more once the previously added are explored sufficiently
works even in with infinite number of actions
keep k = ⌈C · N(s)α⌉ actions with 0 < α < 1
studied in bandit literature on infinitely many armed bandits

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 23

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=966b8c5b01f1eb4b7bb8f4a83ba3f1f1879f5250


MCTS Simulation and Backpropagation

Simulation: choose actions based on fast policies until game ends

purely random surprisingly effective

hand-coded knowledge

learned knowledge

Backpropagation: update statistics used by the selection

N(s),N(s, a)

Q(s, a)

whatever – rewards range, variance, Q(a), etc.

each player stores his perspective vs. min / max

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 23

https://dl.acm.org/doi/pdf/10.1145/1273496.1273531


MCTS Is useful even in non-game setting

First developed and popularised in games

Everything works as well with single player

PROST, POMCP, etc.

More on it in B(E)4M36PUI – Planning for Artificial Intelligence

Further reading on MCTS

RL Introduction (Book) – Section 8.11

Browne, C., Powley, E., Whitehouse, D., et al. 2012. A survey
of Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in games, 4(1), pp.1-43.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 23

http://incompleteideas.net/book/the-book.html
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6145622
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6145622


The game of Go

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 23



The challenge of Go

Following DeepBlue’s victory in 1997, Go was the next challenge

branching ≈ 35 →≈ 350

game length ≈ 57 moves →≈ 300 moves

popular: 4000+ years old and ≈ 27M players worldwide

* pre-MCTS approaches

Gelly, S., Kocsis, L., Schoenauer, M.,
Sebag, M., Silver, D., Szepesvári, C.
and Teytaud, O., 2012. The grand
challenge of computer Go: Monte Carlo
tree search and extensions. Communi-
cations of the ACM, 55(3), pp.106-113.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 23



AlphaGo

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. and Dieleman, S.,
2016. Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587), pp.484-489.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 23

https://www.nature.com/articles/nature16961.pdf


AlphaGo

Idea:

Use MCTS as the base algorithm

Capture the existing human knowledge in a policy pσ(a|s)
Learn a fast simulation policy pπ(a|s) for rollouts
Use RL techniques to optimize policy pρ(a|s) in self-play

Use RL to learn a value function v(s)

Guide MCTS by policies and combine simulations with v

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 23



AlphaGo – learning policies

Supervised learning of human policy

Data: (si , ai ) for 30 million positions from KGS Go Server

Stochastic Gradient Ascent maximizing Ei log pσ(ai |si )
Final prediction accuracy was 57%

1000x faster roll-out policy pπ trained the same achieved 24%
accuracy

Improving policy in self-play

Initialise pρ by pσ

Play one match s1, . . . , sT and receive outcome z ∈ {−1, 1}
Use SGA to maximize Et<T log pρ(at |st)z
Eventually pρ wins over pσ in 80% of games

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 23



AlphaGo – learning value function

The goal is to estimate state value under policy pρ:

vpρ(s) = E[z |st = s, at...T ∼ pρ]

Data: (si , zi ) for 30 million self-play games (one per game)

Use Stochastic Gradient Descent to minimize Ei (v(si )− zi )
2

Resulting v consistently more accurate than pπ rollouts

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 23



AlphaGo – search

Selection:

at = argmax
a

(
Q(st , a) + c

pσ (a|st)
√
N(st)

1 + N(st , a)

)

Expansion:

“leaf node may be expanded” hence, likely not always

Simulation:

The result of the value function and simulation z ∼ pπ is combined

V (sL) = (1− λ)v(sL) + λz

Backpropagation:

For all visited (st , at)

N(st , at) += 1

Q(st , at) +=
1

N(st , at)
V (sL)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 23



AlphaGo – results

AlphaGo won 494/495 matches against the existing programs
AlphaGo won 5− 0 against professional European champion

Larger distributed version on 1202 CPUs and 176 GPUs

Observations:

All components are important →
AlphaGo evaluated thousands
times less positions than DeepBlue

10 years earlier than expected

Human policies still helped in 2015

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 23



Further advancements

AlphaGo Zero (2017)

No human knowledge

AlphaZero (2018)

No simulation

Chess: 9 hours, shogi: 12 hours, Go: 13 days

MuZero (2020)

Not even game rules are necessary

Student of Games (2023)

Many imperfect information games

All imperfect information games?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 23

https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/alphazero-shedding-new-light-on-chess-shogi-and-go/alphazero_preprint.pdf
https://www.nature.com/articles/s41586-020-03051-4.epdf?sharing_token=kTk-xTZpQOF8Ym8nTQK6EdRgN0jAjWel9jnR3ZoTv0PMSWGj38iNIyNOw_ooNp2BvzZ4nIcedo7GEXD7UmLqb0M_V_fop31mMY9VBBLNmGbm0K9jETKkZnJ9SgJ8Rwhp3ySvLuTcUr888puIYbngQ0fiMf45ZGDAQ7fUI66-u7Y%3D
https://www.science.org/doi/10.1126/sciadv.adg3256


Summary

Common games are large

If you can create a good evaluation function, use αβ variants

If it is hard to provide evaluation function, use MCTS

If you do not mind a lot of training, combine MCTS with learned
policy and value functions

Playing perfect information games is mostly a solved problem
Playing imperfect information games is getting there
However, it currently requires huge about of compute

(1000 TPUs for months with Stratego)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 23


