Lecture 5: Solving MDPs and Reinforcement

Learning

Viliam Lisy & Branislav Bo%ansky

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

viliam.lisy©fel.cvut.cz

March, 2024

Viliam Lisy & Branislav BoSansky

Plan of today's lecture

© Value functions and Bellman equations
@ Basic iterative solution techniques for known MDP
Next lecture
© RL algorithms in tabular representation for unknown MDP
@ Scaling up with Neural Networks
© DQN algorithm and its application to Atari games

Viliam Lisy & Branislav BoSansky

Reinforcement learning

Reinforcement learning
IS more autonomous learning

Sensation/

state Reward

Action

* Learning that requires less input from people

« Al that can learn for itself, during its normal operation

Taken from R. Sutton’s slides (and many following are adaptations as well).

Viliam Lisy & Branislav BoSansky

Remember MDP

Standard model for Reinforcement Learning problems

@ S — states

@ R — rewards

@ A — actions 1

@ Discrete steps t =10,1,2,...

[~ EnVirOn ment dynamics Source: Waldoalvarez @ wikimedia

p(s',rls,a) < Pr{S; =s' Ry = r|St—1 = 5,Ar_1 = a}

Viliam Lisy & Branislav BoSansky

The Agent Learns a Policy

Policy at step t, denoted 7, maps from states to actions.

m¢(als) = probability that A; = a when S5y =5

Special case are deterministic policies.

m¢(s) = the action taken with prob =1 when S; = s

@ Reinforcement learning methods specify how the agent
changes its policy as a result of experience

@ Roughly, the agent's goal is to get as much reward as it can
over the long run.

Viliam Lisy & Branislav BoSansky

Value Functions

One of the most fundamental concepts of RL! (and beyond)

A (state) value function for an MDP and a policy 7
Ve S — R

is a function assigning each state s the expected return
vz(s) = E, Gy obtained by following policy 7 from state s.

An action-value (or Q) function for an MDP and a policy 7
gr: S xA—R

maps each state and action to the expected retun of playing action
a in state s and then following policy 7.

Viliam Lisy & Branislav Bosansky

Optimal Value Functions

@ For finite MDPs, policies can be partially ordered:
7 <7’ ifand only if vi(s) < vu(s) forall s€S

@ There are always one or more policies that are better than or
equal to all the others. These are the optimal policies. We
denote them all 7.

@ Optimal policies share the same optimal state-value
function:

vi(s) = max vz(s) forall seS

@ Optimal policies also share the same optimal action-value
function:

g«(s,a) = maxqgr(s,a) forall s€S and ac A

This is the expected return for taking action a in state s and
thereafter following an optimal policy.

Viliam Lisy & Branislav Bosansky

Why Are Optimal (Action-) Value Functions Useful

Any policy that is greedy with respect to v, is an optimal policy.

7.(s) = arg m;xz p(s',rls, a) [r + yvi(s)]

Given g,, the agent does not even have to do a one-step-ahead
search:

7.(s) = arg max q. (s, a)
a

Viliam Lisy & Branislav Bosansky

Bellman Equation for a Policy

ve(s) = Zw(a\s)Zp(s’, rls,a) [r+yvx(s)]

a s',r

This is a set of equations (in fact, linear), one for each state. The
value function for 7 is its unique solution.

forv, for g,

Allows simple computation of values for a policy.
Can we also compute policy for values?

Viliam Lisy & Branislav Bosansky

Backup exmaple

A robot on a slippery floor successfully moves with probability 0.9.

HHH#H
#O #
#G #
HHH#H

HHHHE HEHH #HHH HitH#
#o # # O# #O
#0 # #G # #G # #G #
fi2:2:24 HEH#HH #HHH HitH#

Viliam Lisy & Branislav BoSansky

Bellman Optimality Equation for v,

The value of a state under an optimal policy must equal the
expected return for the best action from that state:

Vi(s) = max gx, (s, a)
a
= mng [Rt+1 + ’yV*(St+1)|5t = S,At = 3]

= m;apr(s’, rls,a) [r +yv(s')] .

s',r
s

The relevant backup diagram: mex

Vi is the unique solution of this system of nonlinear equations.

Viliam Lisy & Branislav BoSansky

Bellman Optimality Equation for g,

q«(s,a) = E [Rm +y max 9+(St41,d)|St =5, A = a]

— Z p(s’, rls, a) [r + vy max q«(s’, a’)] :
a/

s/

,r
s,a

The relevant backup diagram: r

max

g« is the unique solution of this system of nonlinear equations.

Viliam Lisy & Branislav BoSansky

Relation to algorithm A

Is there any relation between v, g used in RL and f, g, h we defined
for deterministic MDPs for algorithm A?

vi(s) = —h*(s)

Viliam Lisy & Branislav Bosansky

Solving the Bellman Optimality Equation

Finding an optimal policy by solving the Bellman Optimality
Equation requires the following:
@ accurate knowledge of environment dynamics;
@ we have enough space and time to do the computation;
@ the Markov Property.
How much space and time do we need?
@ polynomial in number of states,

@ BUT, number of states is often huge (e.g., backgammon has
about 10%° states).

We usually have to settle for approximations.
Many RL methods can be understood as approximately solving the
Bellman Optimality Equation.

Viliam Lisy & Branislav Bosansky

Policy Evaluation (Prediction)

Policy Evaluation: for a given policy 7, compute the
state-value function v,

Recall: State-value function for policy

o0

k
> A Ripe
k=0

ve(s) = EiGy | Se=s] = E;

St:S]

Recall: Bellman equation for v,

vr(s) = Zﬂ(a|s) Zp(s’, rls, a) [r + ’yvﬂ(s’)}

a s',r

—a system of 8| simultaneous equations

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Policy Evaluation (Prediction)

Vg = V1 —> " = Vg = Vg1 — =+ — Up
a “sweep”

A sweep consists of applying a backup operation to each state.

A full policy-evaluation backup:

vgps1(8) = ZTI’(CL|S) Zp(s',r\s,a) [7’ + ’yvk(s’)} Vse§

a s’,r

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

A Small Gridworld Example

1|2 |3
4 |5 |6 |7
8 [9 |10 |11
actions 12 ha ha

(3 An undiscounted episodic task

(0 Nonterminal states: 1,2, .. ., 14;

R = -1

on all transitions

v=1

(3 One terminal state (shown twice as shaded squares)
(1 Actions that would take agent off the grid leave state unchanged
(0 Reward is —1 until the terminal state is reached

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Policy Eval
for the Small Gridworld

Vj, for the

Random Policy

k=0
7 = equiprobable random action choices
= k=1
1]2 |3
T 4 s s |7 R= -
l on all transitions
8 o [to |11 ren
actions 12 13 |14 y=1
3 An undiscounted episodic task k=3
O Nonterminal states: 1,2, .. ., 14;
[One terminal state (shown twice as shaded squares)
[Actions that would take agent off the grid leave state unchanged
3 Reward is —1 until the terminal state is reached k=10
’ ’
vpt1(8) = E m(als) E p(s',r|s,a) {r + Yok (s)] Vs e 8§
a s’,r k=

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-1.0]

-1.0

-1.0]

-1.0]

-1.0

-1.0

-1.0

-1.0

-1.0]

-1.0

-1.0]

-1.0

-1.0

-1.0

0.0

0.0

-1.7

-2.0]

-2.0

-1.7]

-2.0

-2.0/-2

-2.0

20|

-1.7]

-2.0

-2.0

-1.7

0.0

0.0

2.4]-29

-2.9

-3.0|-

-3.0

-2.9|-

0.0

-6.1]-

-6.1

-7.7]-

-8.4)

-8.4]

-9.0

-8.4|-

Iterative Policy Evaluation — One array version

Input 7, the policy to be evaluated
Initialize an array V(s) =0, for all s € 8t
Repeat
A<+0
For each s € &:
v V(s)
V(s) & X, wlals) Yo, pls/,7ls,a) [r + 9V ()]
A+ max(A, |v —V(s)|)
until A < @ (a small positive number)
Output V &~ v,

Why Does lterative Policy Evaluation Work?

Many other RL algorithms use the same proof technique.

Definition (7y-contraction)

Any function F : R” — R" is a y-contraction for 0 < v < 1 if and
only if for some norm || and all x,y € R”

IF(x) = FO)II < Allx = vl

Theorem (Contraction mapping)

For a y-contraction F

@ [terative application of F converges to a unique fixed point
independently of the starting point

@ at a linear convergence rate determined by ~.

(Based on Tom Mitchell’s slides)

Viliam Lisy & Branislav Bosansky 15/19

http://www.andrew.cmu.edu/course/10-703/slides/lecture4_valuePolicyDP-9-10-2018.pdf

Policy Improvement

Suppose we have computed a v, for policy 7. Can we easily
improve it?

If there is a state s and action a such that g, (s, a) > vz(s)
than setting m(s) = a improves the strategy.

Can it break the strategy somewhere else?
No, because the value at s improves.
The values in other states that eventually lead to s improve.
There is no state for which the value can decrease.

Can anything break if we modify more states at once?
No, for a similar reason, the value in each state only increases.

Viliam Lisy & Branislav Bosansky

Policy Iteration — One array version (+ policy)

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A0
For each s € §:
v+ V(s)
V(s) < > g, p(s,7ls,7(s)) [r+V(s)]
A+ max(A, v — V(s)|)
until A < 6 (a small positive number)

3. Policy Improvement
policy-stable < true
For each s € 8:
a <+ 7(s)
m(s) < argmax,), . p(s',7|s, a) [r+V(s)]
If a # 7(s), then policy-stable + false
If policy-stable, then stop and return V' and 7; else go to 2

Policy Iteration

E I E I E I E
o —> Upy —> T —> Uy —> g —> +++ — Ty — U,

T

policy evaluation policy improvement
“greedification”

R.S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction

Iterative Policy Eval

L
for the Small Gridworld Vlorthe | Gresdy Polcy
Random Policy wrt Vi
0.0[0.0{0.0] 0.0
L0 00[0.0] 0.0[0.0
B 0.0[00[0.0] 0.0
0.0/ 0.0 0.0/ 0.0
7 = equiprobable random action choices
0.0[-1.0[-1.0[-1.0 - I
. k=1 -1.0[-1.0]-1.0]-1.0 i]
T
-1.0[-1.0[-1.0[-1.0 1 1
1 2 3 -1.0[-1.0[-1.0| 0.0 } -
T 4 |5 ls |7 R=-1
l on all transitions 0ol-17120]20 [= [P
8 {9 (o (i k=2 -1.7]-20[2.0]-20 T Pl
actions 12 hs e v=1 -2.0/-2.0[-2.0[-1.7 bl ol
-2.0[-2.0{-1.7| 0.0 + ind s
00|-24]-2.9[-3.0 = la
3 An undiscounted episodic task k=3 2.4|-2.0]3.0[-29 Tl T,
. o (S
[Nonterminal states: 1,2, . . ., 14; -291-3.01-2.91-2.4 I}
-3.0[-2.9]-24[0.0 EEE
[One terminal state (shown twice as shaded squares)
3 Actions that would take agent off the grid leave state unchanged 0.0|-6.1)-8.4]-9.0 i
Tla
. . . . -6.1|-7.7)-8.4|-8.4
[Reward is —1 until the terminal state is reached k=10 T~ o
8.4|-8.4]-7.7]-6.1 Ly
-9.0[-8.4[-6.1| 0.0 EEE
/ . 2 : ’ /
T™(s) = argmax srsar—ﬁ—vs}
() & a p(’ ‘ ?)[’Yﬂ—() 00|-14.-20-22. = la
s',r = -14.-18]-20 |20, CECEN
for all s € 8 R = BT AT I
-22.(-20.[-14.] 0.0 EEE

random
policy

optimal
policy

Generalized Policy Iteration

Generalized Policy Iteration (GPI):
any interaction of policy evaluation and policy improvement,
independent of their granularity.

evaluation
Vs vy
A geometric metaphor for
™ V
convergence of GPI:
m ~~ greedy(V)

improvement

Ve, Ty

ﬂ-* —"’U*

bb)

Generalised Policy lteration

It is sufficient to co combine any consistent improvement in value
estimate with any consistent improvement of the policy based on
the value.

@ Subset of states (even one)
@ Improvement only in expectation
@ Policy improvement only based on one action

@ Small value improvement in the right direction

Viliam Lisy & Branislav BoSansky

Value Iteration

Recall the full policy-evaluation backup:

vEt1(8) = Z m(als) Zp(s’, r|s,a) [T + g (3/)} Vs €8

a s',r

Here is the full value-iteration backup:

Vgt1(s) = mngp(s’, rls,a) [r + ’yvk(s')] Vse 8

s',r

Value Iteration — One array version

Initialize array V' arbitrarily (e.g., V(s) =0 for all s € §T)

Repeat
A+0
For each s € §:
v+ V(s)
V(s) ¢~ max, >, p(s',7|s,a) [r+ V()]
A+ max(A, v — V(s)])
until A < 6 (a small positive number)

Output a deterministic policy, 7, such that
7(s) = argmax, Zs,fp(s’, rls,a) [r + vV(s’)]

0.0| 0.0 0.0(0.0
0.0] 0.0 0.0(0.0

V _ 0.0/ 0.0] 0.0| 0.0
— 0 —

0.0 0.0] 0.0] 0.0
12 |3

0.0{-1.0[-1.0{-1.0

T 4 |5 |6 |7 R= ‘1“
¢ on all transitions -1.0{-1.0{-1.0|-1.0
8 |9 Jto i Vi = |10[-10[-10]-10

ion

actions 2 hs |a v=1 -1.0{-1.0|-1.0| 0.0

0.0]-1.0[-2.0[-2.0
1.0[-2.0[-2.0]-2.0
Vo = 2.0[-2.0[-20[-10
2.0[-2.0[-1.0] 0.0

0.0[-1.0]-2.0]-3.0
Vy = [0]20[30[20
2.0[-3.0]-20]-1.0
|3.0[20[-1.0] 0.0

Viliam Lisy & Branislav BoSansky

State and action value functions are key concepts in RL
Their values in different states are tied by Bellman equations

Bellman equations used as operators are contractions and hence
their iterative application converges to unique solutions

(Generalized) poilcy iteration and value iterations are simple
algorithms to solve MDPs

However, there algorithms require full knowledge of MDP, which is
not necessary in RL methods, which generally approximate the full
Bellman operator

Viliam Lisy & Branislav BoSansky

