
Lecture 7: Two-Player Games

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

bosansky@fel.cvut.cz

April, 2024

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 29



Moving to Two-Player Setting

Up to this point → finding optimal plan / best actions to be
played in an environment

The agent was the only one changing the environment
(deterministic environment) or there were stochastic events.

The stochastic events happen according to a known probability
(probability of a box slipping out of the crane, etc.)

What if the environment (or another agent) is deliberately choosing
the actions? → What is the “optimal plan” and how do we find it?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 29



Games and Game Theory

Game Theory

An agent explicitly reasons about the possible actions of the other
agents, their goals, and seeks own actions to be played w.r.t. to
what other agents are going to play → such optimal behavior is
defined by game theory.

Game theory is a broad scientific field cover-
ing parts of computer science, mathematics,
economy.

We will only scratch the surface (see B4M36MAS

Computational Game Theory or XEP36AGT for more

in-depth topics regarding game theory).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 29



Games, Game Theory, and Artificial Intelligence

What does this have to do with AI?

Playing games well has been a challenge from the beginning of AI
and computer science.

John von Neumann, one of the founders
of computer science, also established game
theory (von Neumann minmax theorem)
and was interested in poker and bluffing.

Games are very good benchmarks for algorithms (popular, known,
well-defined rules), they are challenging (the state space is huge).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 29



What are we going to cover?

We need to restrict to one of the most simple class of games:

two players

strictly competitive (or zero-sum) – win of one player is the
loss of the opponent

perfect information (chess, go, tic-tac-toe, ...)

What are we going to learn (this week)?

how to find the optimal solution (optimal strategy)

classical algorithms (pre 2006)

variants of branch-and-bound algorithm
useful heuristics

Next week → scaling-up and Monte Carlo sampling.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 29



Extensive-Form Games with Perfect Information

Sequential games with finite horizon use extensive-form
representation that generalize search trees:

P is a set of players P = {1, 2} (or Max and Min)

H is a finite set of histories of actions from the initial
positions where some player makes a decision. Hi are decision
points of player i ∈ P.

A is a finite set of actions, A(h) denotes a set of actions
applicable in a decision node h ∈ H

Z ⊆ H is a set of terminal histories where the game ends

u is the utility function that assigns an outcome of the game
to each terminal history, u : Z → R

Technically, in game theory, every player maximizes their own
utility function. In zero-sum games, utility of player 1 equals
negative utility of player 2. Hence minimizing the utility of player 1
is the same as maximizing its negative value.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 29



Solving the Two-Player Games

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 29



Solving the Two-Player Games

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

How to solve two-player games?

In MDPs, we have sought for
an optimal plan or the best action
for each state.

In games, we can also select
the best action to be played in
each decision point. Best action
can either maximize (player 1) or
minimize (player 2) the utility.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 29



Solving the Two-Player Games

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Similarly to deterministic uninformed
search, we can use a depth-first
search algorithm. For a history h:

1 if h is a terminal history
(h ∈ Z ), then return u(z),

2 if h is a decision node, evaluate
all children
va = search(ha), a ∈ A(h) and

1 if h ∈ H1, return maxa∈A(h) va
2 if h ∈ H2, return mina∈A(h) va

This baseline algorithm is known as minimax algorithm or simply a
backward induction in two-player perfect information games.

The utility of player 1 when both players play optimally is called
the value of the game.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 29



We Do Not Need To Consider Everything

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Search through the complete game
tree can be impractical and unnec-
essary. Consider how the algorithm
advances through the search tree:

after fully evaluating action L in
the root node, vL = 3,

when evaluating M, the
algorithm first visits X2 and
determines that vX2 = 2

Obsevation

Regardless of the utility action after playing Y 2, action M is never
going to be selected in the root node as the best action!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 29



Alpha-Beta Pruning

Minimax search with alpha-beta pruning:

variant of a branch-and-bound algorithm

extend the search with lower (α) and upper-bound (β)
estimates on the value of the game.

For a decision point h (initial values for bounds αh and βh are
passed as parameters):

1 if h is a leaf (h ∈ Z ), then return u(z),
2 if h is a decision node and h ∈ H1 then for each ah ∈ A(h):

1 vh = max(vh, search(ah, αh, βh)) αh = max(αh, vh)
2 if βh ≤ αh then break

3 if h is a decision node and h ∈ H2 then for each ah ∈ A(h):
1 vh = min(vh, search(ah, αh, βh)) βh = min(βh, vh)
2 if βh ≤ αh then break

4 return vh

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 29



Example with Alpha-Beta Pruning

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Alpha-beta pruning starts with
α∅ = −∞ and β∅ = ∞. After
evaluating X1, βL is set to 4. The
value is updated to 3 after evaluating
Y 1.

The solution of vL, value 3, is
then propagated to α∅ and thus the
next recursive call uses updated lower
bound (hence, αM is initialized to 3).

After evaluating X2, βM = 2. Therefore, we have βM < αM and
we can stop exploring node M.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 29



Negamax

In many standard board games, players are alternating (Max
player moves, then Min, etc.).

We can simplify the pseudocode of the algorithm by reverting the
rewards and bounds:

1 if h is a leaf (h ∈ Z ), then return u(z),
2 for each ah ∈ A(h):

1 vh = max(vh,−search(ah,−βh,−αh)) αh = max(αh, vh)
2 if βh ≤ αh then break

3 return vh

This algorithm is known as Negamax. It is just a more compact
way of describing the same behavior.

For educational purposes (learning and understanding the
algorithm), I recommend using the full version (2 players, Max,
Min; this holds also for follow-up algorithms, such as Negascout).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 29



Changing the Bounds

Recall, what we stated before: Alpha-beta pruning starts with
α∅ = −∞ and β∅ =∞.

Setting the bounds this way is definitely correct. But what happens
if we run Alpha-Beta pruning with some other initial values?

Imagine that we have a position in a game and we estimate (using
heuristic evaluation) that the value of the game should be
around 10.

What if we run Alpha-Beta pruning with interval [α∅, β∅] = [9, 11]?

Positive Impact:
We can evaluate significantly
fewer nodes!

Negative Impact:
We can miss the correct solu-
tion!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 29



Changing the Bounds

What if we run Alpha-Beta pruning with interval [α∅, β∅] = [9, 11]?

Positive Impact:
We can evaluate significantly
fewer nodes!

Negative Impact:
We can miss the correct solu-
tion!

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

Consider our example: After evalu-
ating X1, βL is set to 4 and if α∅
(and thus initial value of αL) is set
to 9, then βL < αL. Therefore, Y 1
is never evaluated and the correct so-
lution for this subtree (and also the
whole game) is not found.

Question

What is the value returned if we continue with the algorithm?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 29



Changing the Bounds

Question

What is the value returned if we continue with the algorithm?

The algorithm returns value 7. This is not the value of the game
(we know it is 3).

What can we conclude from return value 7?

the value of the game is not in the interval [9, 11] → our
initial estimation was incorrect

since the return value is lower than the estimated lower
bound, we know that some actions of Min player were not
properly explored

hence, the actual value of the game can only be lower → we
can rerun the search with interval [−∞, 7]

If the return would be higher than the estimated upper bound, we
know that the true value is higher.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 29



Changing the Bounds

We can systematically search for a correct value of the game (thus
the optimal strategy) by:

(e.g., binary) search over the interval of values

repeated calls to the alpha-beta algorithm with modified
bound interval (called window)

1

1Best-first fixed-depth minimax algorithms. Plaat et. al. , In Artificial
Intelligence, Volume 87, Issues 1-2, November 1996, Pages 255-293

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 29



Action Ordering

Can we use the idea of quick check during the search?

How does the ordering in which the actions are evaluated affect
the number of searched nodes?

4 3 2 -1 7 2

MAX

MIN

L
M

R

X1 Y1 X2 Y2 X3 Y3

4 32 -1 7 2

MAX

MIN

L

M R

X1 Y1X2 Y2 X3 Y3

Assuming the actions are evaluated from left to right, Alpha-Beta
pruning will not prune out anything in the second game.

The estimated searched space of Alpha-Beta pruning is O(bd/2) in
case actions are evaluated in the optimal order (as opposed to
O(bd) for minimax).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 29



NegaScout (or Principal variation search)

What if we assume have the optimal ordering of actions?

We can, for example, have a good heuristic that sorts the actions
prior to an evaluation in each node.

Idea:

fully evaluate the first action (i.e., with the full-sized interval),

evaluate subsequent actions with a minimal-sized interval
(null window),

based on the null-window evaluation:

if the returned value indicates that the value of the subtree is
the same or worse, the algorithm proceeds with next action
if the returned value indicates that the value of the subtree can
be better, the algorithm must evaluate this action again
properly

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 29



NegaScout (or Principal variation search)

For a decision point h (initial values for bounds αh and βh are
passed as parameters):

1 if h is a leaf (h ∈ Z ), then return u(z),

2 β′h = βh, α′
h = αh

3 if h is a decision node and h ∈ H1 then for each ah ∈ A(h):
1 vh = search(ah, αh, β

′
h)

2 if ((αh < vh < βh) and (h is not the first child))

vh = search(ah, vh, βh)

3 αh = max(αh, vh)
4 if βh ≤ αh then break
5 β′

h = αh + 1
6 return αh

4 ... (similarly for player 2) ...

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 29



NegaScout (or Principal variation search) – Player 2

For a decision point h (initial values for bounds αh and βh are
passed as parameters):

1 ...
2 if h is a decision node and h ∈ H2 then for each ah ∈ A(h):

1 vh = search(ah, α
′
h, βh)

2 if ((αh < vh < βh) and (h is not the first child))

vh = search(ah, αh, vh)

3 βh = min(βh, vh)
4 if βh ≤ αh then break
5 α′

h = βh − 1
6 return βh

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 29



NegaScout vs. Alpha-Beta

NegaScout can evaluate some nodes multiple times. At the same
time, it can never evaluate more different histories and can be
10− 20% faster than Alpha-Beta pruning.

3

7 -1

MAX

MIN

L

R

X Y

MAX

v_L = 4

A B

Assume that after evaluating sub-
tree L, the value vL equals to 4.
The evaluation of R starts with
[αR , βR ] = [4, 5] = [αRX , βRX ].
When the algorithm evaluates A,
it updates αRX to 7.Since βRX has
been manually set to 5, it holds that
βRX < αRX and the algorithm prunes
out evaluation of action B.

Note that this would not happen in
Alpha-Beta pruning.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 29



Game Solving vs. Game Playing

The algorithms that we have described so far are offline
(equilibrium computation) algorithms.

Given a game, they compute an optimal strategy (for both players)
and value of the game.

However, this is not tractable for most practical games due to the
size of the game tree:

chess has branching factor (number of applicable actions)
≈ 35, Go up to 360, etc.; games can take tens (hundreds) of
moves of both players to terminate.

Game-playing algorithms are searching only to a limited depth.
Instead of a utility function applied on terminal states, they return
a value of a heuristic evaluation function.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 29



Game Solving vs. Game Playing

Unfortunately, designing a well-informed heuristic evaluation
function is much more challenging than in the single-player case.

Optimizing a strategy in a depth-limited game does not have to
correspond to truly optimal strategy:

consider chess and assume the algorithm searches to depth d
actions for both players

player 1 has to sacrifice a queen to avoid getting checkmate
and losing

however, the checkmate is beyond the horizon of d actions

hence, from the perspective of evaluation function, it can be
better to sacrifice a pawn or a knight instead of the queen –
the algorithm does not know that sacrificing a different piece
does not prevent the problem

There are heuristics tackling these issues (e.g., at certain dynamic
positions, the search is not strictly terminated at the horizon).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 24 / 29



Additional Heuristics

There are many useful heuristics developed for games, that can be
useful in other problems.

One of the best known are transposition tables:

a cache table with previously evaluated positions,

minimize negative effects of game tree (if the same position is
reached with a different sequence of actions),

for a depth-limited alpha-beta (negascout) algorithm, the
depth limit and bounds can affect the computed (and stored)
value

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 25 / 29



Games with Chance

Two-player games can easily be extended with stochastic events.

We can introduce another (Nature or chance) player that chooses
actions according to a known distribution.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 26 / 29



Games with Chance

Question

How does the Alpha-Beta pruning translates to a game with
chance nodes?

Example:

Can Alpha-Beta pruning algorithm
prune-out anything? Assume that
the utility values can be ∈ R.

What happens if the possible utility
values are from interval [1,∞]?

You should be able to figure this out! A similar task can be in the
exam.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 27 / 29



What is it all good for?

The first algorithm that beat a chess profes-
sional, Deep Blue, was built on these algorithms
(link to a paper).

Deep Blue relies on many of the ideas developed in ear-
lier chess programs, including quiescence search, iterative
deepening, transposition tables (all described in [24]), and
NegaScout [23].

Besides that, Deep Blue was heavily using parallel search and
special hardware “chess chips”.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 28 / 29

https://core.ac.uk/download/pdf/82416379.pdf


What is it all good for?

The techniques are applicable for other problems / search-based
algorithms:

use of bounds and pruning out not-perspective branches

problems with the horizon (if a monotonic heuristic is not
possible)

use of cached values

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 29 / 29


