
Lecture 3: Informed (Heuristic) Search

Viliam Lisý & Branislav Bošanský

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.

Czech Technical University in Prague

bosansky@fel.cvut.cz

March, 2024

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 1 / 24

Formalization

Last week – formalization:

1 a well-defined problem (inputs / outputs for the algorithm)

2 formalization helps to think about the problem (e.g.,
formalizing the dynamics)

3 formalization is independent on the algorithm (problems
formalized using a standard formalism can be solved with
different algorithms)

Uninformed / Informed search algorithms solve deterministic MDPs
(but they can be solved also with learning-based approaches).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 2 / 24

Search Algorithm – Uniform-Cost Search

1 Start from the initial state S0

2 Apply available actions to the current state and generate new
possible states

3 Select one of the newly generated states as the current one

4 If the current state is the goal state → finish

5 If not, go to step 2

uniform-cost search → the state that accumulated the lowest cost
is selected for the expansion

Question

For the uniform-cost search (when we optimize the costs rather the
number of actions), can we terminate the search when the goal
state is generated (added into the open list)?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 3 / 24

Improving Uniform-Cost Search

Question

For the uniform-cost search (when we optimize the costs rather the
number of actions), can we terminate the search when the goal
state is generated (added into the open list)?

NO → the algorithm can terminate only when the goal state is
selected for expansion (it is the state with lowest costs)

The lowest accumulated cost does not necessarily mean that the
state will be on the optimal path to the goal.

What is a good predictor of the future? → heuristics

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 4 / 24

Heuristics

Heuristics

Estimate of the cost from the current state to the goal. Denoted
h : S → R+

We can use the heuristics estimate to choose next states to expand.

Optimal heuristics h∗ – the optimal cost from a state to goal.

In practice, we want to be as close to the optimal heuristics as
possible. The estimate is typically a solution of a simplified
problem.

We can order states in fringe according to the heuristic value.

How would that work? Will the algorithm always find an optimal
solution?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 5 / 24

Using Heuristics

#
G
#
#
@
#

What can be a good heuristic for the problem of collecting the
gold in a maze?

Manhattan distance from the current position to the gold

Euclidean distance

...

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 6 / 24

Using Heuristics – Greedy Best-First Search

What if we use the Manhattan distance? The heuristic values are
as follows:

#
G 1 2 3
4
2 # # 5
3 @ 5 6
#

Obviously, following the heuristics in a greedy manner will result in
a suboptimal path.

If we do not maintain the closed list, the greedy best-first search
algorithm will not terminate!

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 7 / 24

Using Heuristics – Greedy Best-First Search

We know that uniform-cost search algorithm works here

#
G 7 6 5
4
2 # # 3
1 @ 1 2
#

Accumulated costs can help the algorithm to get out of parts of the
state space that the heuristics incorrectly evaluates as promising.

What if we select the next state to expand based on the sum of
accumulated costs and heuristic estimation?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 8 / 24

Using Heuristics (2)

#
G
#
#
1+3 @ 1+5
#

#
G
#
2+2 # #
@ 2+4 1+5
#

#
G
#
@ # #
3+3 2+4 1+5
#

#
G
#
#
3+3 2+4 @ 2+6
#

...

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 9 / 24

Correct Use of Heuristics - A* Search

Let s ∈ S be the current state represented as a node n ∈ N in the
search tree. Now, g : N → R+ is the cost accumulated on the
path from the starting state to the current state s along the path
in the search tree to node n. In the A∗ algorithm, the choice of the
next node to expand is the one that minimizes the function

f (n) = g(n) + h(n)

Do we have guarantees that such algorithm finds an optimal
solution?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 10 / 24

Correct Use of Heuristics - Example

What if we have a heuristic function as follows?

#
G 0 0 0
30 # # 0
20 # # 0
10 @ 0 0
#

The right-hand (and longer) path would be found first. → If we
use an arbitrary heuristic function, the algorithm is not optimal.

How do we guarantee the optimality? → The algorithm has to use
“meaningful heuristics”.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 11 / 24

Heuristics Properties – Admissibility

Definition

A heuristic is admissible if it never overestimates the cost to the
goal (the heuristic is always optimistic; h(n) ≤ h∗(n) ∀n ∈ N).

Theorem

If the heuristic is admissible, A* is always optimal (finds an
optimal solution).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 12 / 24

Optimality of A*

proof

Let C ∗ be the cost of the optimal path to goal
state G and let’s assume that the A∗ algorithm
found a suboptimal path with cost C ′ > C ∗.

In the open list of the algorithm, there must
be a node that is on the optimal path from the
starting state to the goal (denote it n).

f (n) = h(n) + g(n) ≤ h∗(n) + g(n) ≤ C ∗ < C ′

therefore, node n should have been selected for
the expansion before goal state G reached via
suboptimal path.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 13 / 24

Optimality of A*

Is this enough? What if the algorithm reaches the same state
multiple times ... can we discard the next visits or does the
algorithm need to re-evaluate already closed states?

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 14 / 24

Optimality of A*

The algorithm explores:

s2; f (s2) = 2 + 1 → s3 added to fringe

s3; f (s3) = 4 + 90 → G added to fringe

s1; f (s1) = 1 + 100 → s3?

The algorithm cannot dismiss it as already
solved since it found a better path to s3. Oth-
erwise, the algorithm would miss the optimal
path s0 → s1 → s3 → G

It is safe to discard already explored state if the cost of the new
path is greater or equal than the cost with which the state has
been explored.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 15 / 24

Heuristics Properties – Consistency

Definition

Consider two nodes in the search tree n and n′ such that n′ is
reached immediately by making an action in n. Denote c(n, n′) the
cost for this action. A heuristic is consistent if the following holds:

h(n) ≤ h(n′) + c(n, n′)

(or g(n) + h(n) ≤ g(n′) + h(n′)).

Consistency is a stronger property than admissibility (every
consistent heuristic is admissible).

Intuitions:

similar to triangle inequality

heuristic function is more informative deeper in the search tree

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 16 / 24

Optimality of A* – Efficiency

Theorem

Assume that the A∗ algorithm uses a consistent heuristic. If a
state is selected for exploration, the algorithm has already found an
optimal path to this state.

Theorem

A∗ algorithm is optimally efficient in the sense no other optimal
algorithm is guaranteed to expand fewer nodes than A∗.

A∗ expands all nodes in the search tree with
f (n) = g(n) + h(n) < C ∗. Any other algorithm has to explore
these nodes as well, otherwise it can miss the optimal solution.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 17 / 24

Iterative Deepening A* (IDA*)

Despite the theoretical properties, memory requirements of the A*
algorithm can be still significant (note that h(n) = 0 for all nodes
n in the search tree is a consistent heuristic).

We can use limited-cost A* with cost cutoff c , such that any
node with g(n) + h(n) > c is not expanded. IDA* gradually
increases the cost cutoff.

Other variants:

recursive best-first search (RBFS)

(simplified) memory-bounded A* (MA* / SMA*)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 18 / 24

Designing Heuristics

How should we design admissible heuristics?

solve a simplified (relaxed) problem
(e.g., there are no obstacles in a maze)

solve only a single subproblem

split into more subproblems

...

The heuristic function has to be informative (note that h(s) = 0
for all states s ∈ S is an admissible heuristic but it is not very
informative).

Consider two admissible heuristic functions h1 and h2 such that
h1(s) ≥ h2(s) for all states s ∈ S . We say that h1 dominates h2

and is more informative.

More informative heuristics expand fewer nodes in the search tree.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 19 / 24

Example Heuristics

Recall the 8-puzzle problem

1 2

4 5 3

7 8 6

What are the possible admissible heuristics?

number of correctly placed tiles

sum of Manhattan distances of tiles to their target location

solving a subproblem
1 2

4 * 3

* * *

→
1 2 3

4 * *

* *
all such combinations can be pre-computed and stored in a
database

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 20 / 24

Example Heuristics – Does it Matter?

YES

Compare the average number of expanded nodes for the number
misplaced tiles (h1) and the sum of Manhattan distances (h2):

Sol. length Iterative Deepening A∗(h1) A∗(h2)

8 6384 39 25
12 3644035 227 73
16 — 1301 211
20 — 7276 676

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 21 / 24

Inadmissible Heuristics

In some cases, admissible heuristics can still expand too many
nodes → the algorithm is slow, requires large memory (open /
closed list).

We can sacrifice optimality guarantees for performance by using
inadmissible heuristics. Let ha(s) be an admissible heuristic
function. If we use a modified heuristic function hw (s) = ε · ha(s)
for some ε > 1, the found solution has a cost at most ε-times of
the optimal one.

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 22 / 24

(not so) Ancient AI

One of the best known algorithms in AI.

Created as a part of the Shakey project
(1968)

But the research has not stopped with A* → many variants.

AAAI 2016 Best Paper Award → Bidirectional Search That Is
Guaranteed to Meet in the Middle by Holte et al. (link)

Optimize Planning Heuristics to Rank, not to Estimate
Cost-to-Goal by Leah Chrestien, Tomas Pevny, Stefan Edelkamp,
Antonin Komenda, NeurIPS 2023 (link)

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 23 / 24

https://webdocs.cs.ualberta.ca/~holte/Publications/MM-AAAI2016.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/50ea4dbd1cff6bd3daef939eff10c092-Paper-Conference.pdf

Bidirectional Heuristic Search

Abstract

We present MM, the first bidirectional heuristic search algorithm
whose forward and backward searches are guaranteed to “meet in
the middle”, i.e. never expand a node beyond the solution
midpoint.

Key idea

MM runs an A*-like search in both directions, except that MM
orders nodes on the Open list in a novel way. The priority of node
n on OpenF , prF (n), is defined to be:

prF (n) = max(fF (n), 2gF (n)).

Viliam Lisý & Branislav Bošanský Introduction to Artificial Intelligence 24 / 24

