Medical ultrasound imaging Introduction

André Sopczak

Institute of Experimental and Applied Physics, Czech Technical University in Prague http://cern.ch/sopczak andre.sopczak@cvut.cz based on lectures 2008-2023 by J.Kybic, using plots by J.Hornak¹, E.Dove, P.Stoyen

2024

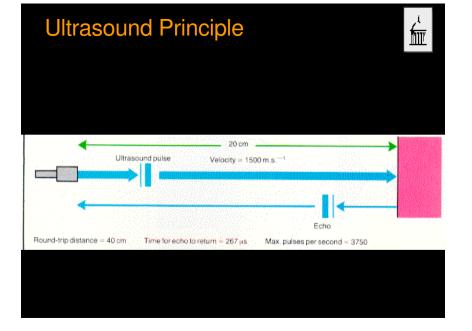
¹http://www.cis.rit.edu/htbooks/mri/

Introduction

Ultrasound acoustics

- Waves Wave equation Reflection and refract Interface reflection
- Attenuation

Medical ultrasound


- Devices
- Cardiologic US Intravascular US

Generation/detection

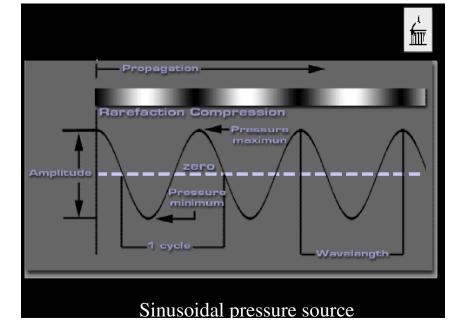
Generation Steering/Beamforming Focusing Processing and control Artefacts

Medical ultrasound basics

- $\blacktriangleright\,$ Acoustic waves, frequency 2 $\sim 50\,{\rm MHz}$
- Measure the time and intensity of the echo
- Harmless
- Stopped by air and dense tissues (bone)

Introduction

Ultrasound acoustics


Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

Generation/detection

Generation Steering/Beamforming Focusing Processing and control Artefacts

Physical quantities Ultrasound

Property	Symbol	Unit	Usual values
Speed	С	m/s	$1350 \sim 1800\mathrm{m/s}$
Wavelength	λ	m	$0.1\sim 0.8\text{mm}$
Frequency	f	Hz	$2\sim 20\text{MHz}$
Density	ϱ	kg/m^3	$\sim 1000 { m kg/m^3}$
Intensity	1	W/m^2	$1\sim 10{ m mW/cm^2}$

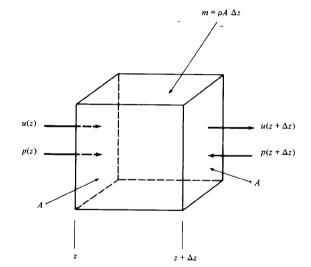
Introduction

Ultrasound acoustics

Waves

Wave equation

Reflection and refraction Interface reflection Attenuation


Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control Artefacts

Elementary volume

Speed u, pressure p, density ρ , area A, mass m.

Newton's law

Motion along z:

$$F = ma = m\frac{\mathrm{d}u}{\mathrm{d}t} = m\left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial z}\frac{\partial z}{\partial t}\right) \approx m\frac{\partial u}{\partial t}$$

force F = pA:

$$(p(z) - p(z + \Delta z))A = m \frac{\partial u}{\partial t}$$

for $\Delta z \ll z$:

$$-\frac{\partial p}{\partial z}\Delta z A = m\frac{\partial u}{\partial t}$$

as $m = \rho A \Delta z$

$$-\frac{\partial p}{\partial z} = \rho \frac{\partial u}{\partial t}$$

Conservation of mass law

Difference of entering and exiting mass, density change:

$$A\Big(u(z+\Delta z)
ho(z+\Delta z)-u(z)
ho(z)\Big)=-A\,\Delta zrac{\partial
ho}{\partial t}$$

for $\Delta z \ll z$:

$$\frac{\partial \rho u}{\partial z} = -\frac{\partial \rho}{\partial t}$$

density $\rho = \rho_0 + \rho_1$, $\rho_0 = \text{const}$, $\rho_1 \ll \rho_0$:

$$\rho_0 \frac{\partial u}{\partial z} = -\frac{\partial \rho_1}{\partial t}$$

Compressibility (stlačitelnost) $\frac{\rho_1}{\rho_0} = Kp$, K = 1/E:

$$\frac{\partial u}{\partial z} = -K \frac{\partial p}{\partial t}$$

1D wave equation

$$\rho \frac{\partial u}{\partial t} + \frac{\partial p}{\partial z} = 0 \quad \text{derive by } z$$
$$\frac{\partial u}{\partial z} + K \frac{\partial p}{\partial t} = 0 \quad \text{derive by } t$$
$$\rho \frac{\partial^2 u}{\partial t \partial z} + \frac{\partial^2 p}{\partial z^2} = 0$$
$$\frac{\partial^2 u}{\partial z \partial t} + K \frac{\partial^2 p}{\partial t^2} = 0$$

subtract

$$\frac{\partial^2 p}{\partial z^2} - K \rho \frac{\partial^2 p}{\partial t^2} = 0$$

similarly

$$\frac{\partial^2 u}{\partial z^2} - \mathcal{K}\rho \frac{\partial^2 u}{\partial t^2} = 0$$

Wave equation solution

Harmonic wave:

$$p = p_+ \cos(\underbrace{\omega t - kz}_{\phi})$$

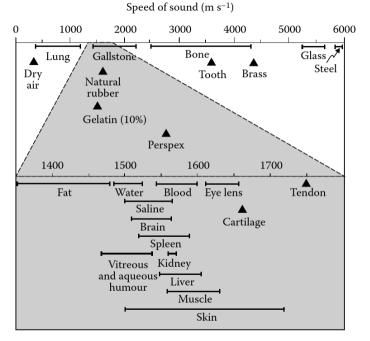
where k is the wave number (vlnové číslo) [rad/m].

Wave speed (phase velocity):

$$\phi_0 = \omega t - kz \quad \rightarrow \quad z = \frac{\omega}{k}t - \frac{\phi_0}{k}$$
 $c = \omega/k$
 $c = \lambda f$ because $\omega = 2\pi f, \quad k = \frac{2\pi}{\lambda}$

Wave speed

$$p = p_{+} \cos(\underbrace{\omega t - kz}_{\phi})$$
$$\frac{\partial^{2} p}{\partial z^{2}} = -p_{+}k^{2} \cos(\omega t - kz)$$
$$\frac{\partial^{2} p}{\partial t^{2}} = -p_{+}\omega^{2} \cos(\omega t - kz)$$


The wave equation

$$\frac{\partial^2 p}{\partial z^2} = K \rho \frac{\partial^2 p}{\partial t^2}$$

holds if

$$k^2 =
ho K \omega^2 \quad
ightarrow \qquad c = \frac{1}{\sqrt{
ho K}} = \sqrt{\frac{E}{
ho}} \quad \text{because} \quad c = \frac{\omega}{k}$$

Other wave equation solution

$$p = p_{-}\cos(\omega t + kz)$$

Any forward or backward wave (by linearity and harmonic decomposition).

$$p = f_+(z + ct) + f_-(z - ct)$$

Forward and backward wave combination:

$$p = p' (\cos(\omega t - kz) + \cos(\omega t + kz))$$

Standing wave:

$$p = 2p'\cos(\omega t)\cos(kz)$$

Acoustic impedance

$$Z_a = rac{p \text{ (pressure)}}{Q \text{ (flow)}} \text{ [Pa} \cdot \text{s/m}^3 \text{]}$$

"acoustic Ohm".

For an infinite tube (S speed of sound):

$$Z_a = \frac{\rho_0 c}{S}$$

 $Z = \rho_0 c$ is a characteristic acoustic impedance.

Unit $[kg/s \cdot m^2] = 1$ Rayl.

Acoustic impedance (2)

Acoustic impedance

$$Z = \frac{p}{Q}$$

Specific acoustic impedance

$$Z_{
m sp}=Z_{
m a}S=rac{p}{Q}S=rac{p}{u}$$
 as flow $Q=Su$

Characteristic acoustic impedance

$$Z = \varrho_0 c = \sqrt{\frac{\rho_0}{K}}$$

For plane waves in lossless medium

$$Z = Z_{sp}$$

Wave intensity

Kinetic and potential energy density (phase shifted by 90°)

$$i = \frac{1}{2} \left(Zu^2 + \frac{p^2}{Z} \right) \quad [W/m^2]$$

Effective values

$$I = U^2 Z = \frac{P^2}{Z}$$

Often expressed in dB

$$10\log_{10}\frac{I_1}{I_2} = 20\log_{10}\frac{P_1}{P_2} = 20\log_{10}\frac{U_1}{U_2}$$

Speed and impedance variations

Material	Density $ ho ({ m kgm^{-3}})$	Speed c (ms ⁻¹)	Characteristic impedance Z $(kgm^{-2}s^{-1}) \times 10^{6}$	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55-1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64 - 1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65 - 1.74	(0.96 - 1.4)
Spleen	1060	1566	1.65-1.67	-

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction

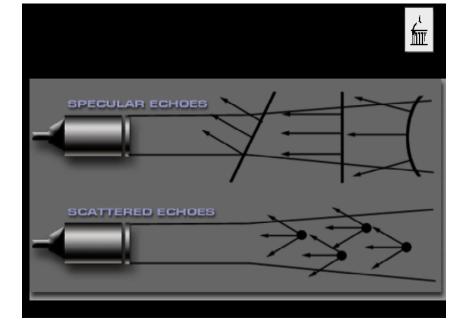
Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing Processing and control Artefacts


Ray/tissue interaction types

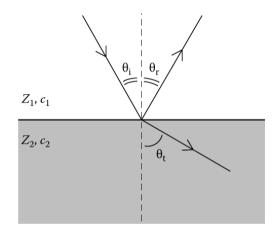
• $d \gg \lambda$

- Geometric (specular) reflection and refraction.
- Strong reflection.
- Diaphragm, vessels, tissue/bone interface, tissue/lung interface, ...

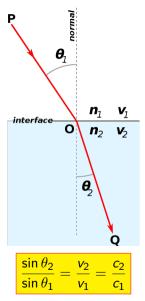
• $d \ll \lambda$

- Scattered reflection. Stochastic non-directional scattering and interference.
- Main tissue signal. Speckle.
- Most soft tissues, blood.

Specular Reflection


 The first, specular echoes, originate from relatively large, strongly reflective, regularly shaped objects with smooth surfaces. These reflections are angle dependent, and are described by reflectivity equation. This type of reflection is called specular reflection.

Scattered Reflection


The second type of echoes are scattered that originate from small, weakly reflective, irregularly shaped objects, and are less angle-dependent and less intense. The mathematical treatment of non-specular reflection (sometimes called "speckle") involves the Rayleigh probability density function. This type of reflection, however, sometimes dominates medical images, as vou will see in the laboratory demonstrations.

Reflection and refraction

 $\theta_i = \theta_r$

Fermat's principle of least time.

Amplitude reflection coefficient for normal incidence $\theta_i = \theta_r = 0$

$$R_{a} = \frac{P_{r}}{P_{i}} = \frac{U_{r}}{U_{i}} = \frac{Z_{2} - Z_{1}}{Z_{2} + Z_{1}}$$

Reflectivity for Various Tissues

Materials at Interface	Reflectivity
Brain-skull bone	0.66
Fat-muscle	0.10
Fat-kidney	0.08
Muscle-blood	0.03
Soft tissue-water	0.05
Soft tissue-air	0.9995

Power/intensity reflection coefficient

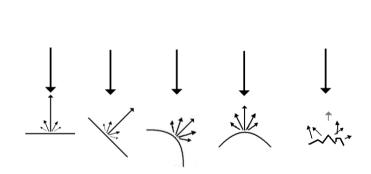
$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Reflectivity (2)

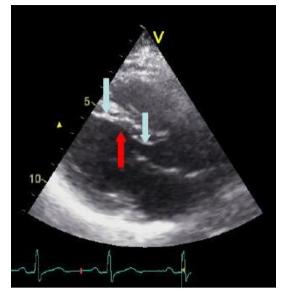
Power/intensity reflection coefficient

$$R = \frac{I_r}{I_i} = R_a^2 = \left(\frac{Z_2 - Z_1}{Z_2 + Z_1}\right)^2$$

Energy conservation law

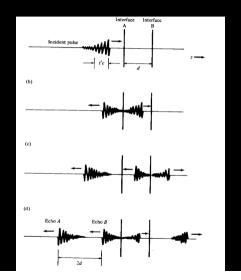

$$I_i = I_r + I_t \longrightarrow R = 1 - \frac{I_t}{I_i}$$

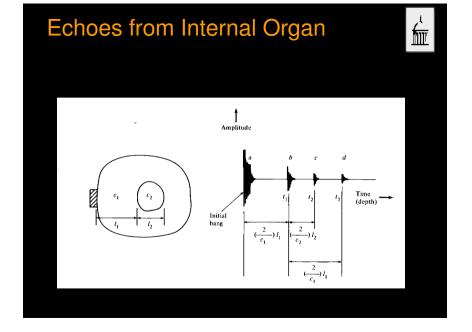
Reflectivity (3)


Reflection for arbitrary angle

$$R_{a} = \frac{Z_{2}\cos\theta_{i} - Z_{1}\cos\theta_{t}}{Z_{2}\cos\theta_{i} + Z_{1}\cos\theta_{t}}$$

Directional dependency of reflection




Directional dependency of reflection

Echoes from Two Interfaces

Attenuation

Signal attenuation reasons:

- Wavefront divergence
- Scattering (elastic)
- Absorption (tissue heating)

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Attenuation (2)

Amplitude attenuation

$$P(x) = P_0 \mathrm{e}^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 e^{-2\mu x}$$

Attenuation (2)

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 e^{-2\mu x}$$

► Half-value layer (HVL)

$$\frac{\log 2}{\mu}$$

Attenuation (2)

Amplitude attenuation

$$P(x) = P_0 e^{-\mu x}$$

Power/intensity attenuation

$$I(x) = I_0 e^{-2\mu x}$$

► Half-value layer (HVL)

$$\frac{\log 2}{\mu}$$

Half-power distance (HPD)

$$\frac{\log 2}{2\mu}$$

Attenuation and frequency

Attenuation increases approximately linearly with frequency

 $\mu \propto f$

Penetration (approximate)

frequency [MHz]	depth [cm]
3.5	$10\sim 20$
5.0	$5\sim 10$
7.5	$2.5\sim 5$
10.0	$1\sim4$

Ultrasound Attenuation

Material	Half–power distance (cm
Water	380
Blood	15
Soft tissue	5 to 1
except muscle	1 to 0.6
Bone	0.7 to 0.2
Air	0.08
Lung	0.05

Tissue attenuation variations

Material	Density ρ (kgm ⁻³)	Speed c (ms ⁻¹)	Characteristic impedance Z $(kgm^{-2}s^{-1}) \times 10^{6}$	Absorption coefficient α (dB cm ⁻¹) at 1 MHz
Water	1000	1480	1.5	0.0022
Blood	1060	1570	1.62	(0.15)
Bone	1380-1810	4080	3.75-7.38	(14.2-25.2)
Brain	1030	1558	1.55 - 1.66	(0.75)
Fat	920	1450	1.35	(0.63)
Kidney	1040	1560	1.62	-
Liver	1060	1570	1.64 - 1.68	(1.2)
Lung	400	650	0.26	(40)
Muscle	1070	1584	1.65 - 1.74	(0.96 - 1.4)
Spleen	1060	1566	1.65 - 1.67	-

Half amplitude

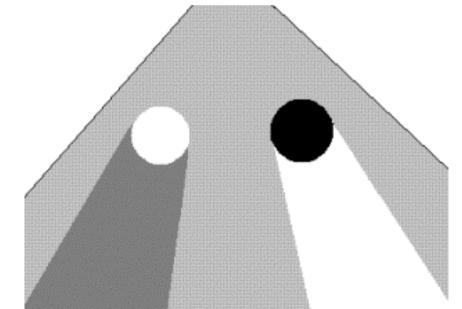
$$20\log_{10}\frac{1}{2}\approx-6\,\text{dB}$$

Half power

$$20\log_{10}\frac{1}{\sqrt{2}} = 10\log_{10}\frac{1}{2} \approx -3\,\text{dB}$$

Tissue attenuation variations

Half amplitude


$$20\log_{10}\frac{1}{2}\approx-6\,\text{dB}$$

Half power

$$20\log_{10}\frac{1}{\sqrt{2}} = 10\log_{10}\frac{1}{2} \approx -3\,\text{dB}$$

At f = 3.5 MHz, $\mu/f = 0.0022$ dB/cm/MHz corresponds to HPD = $\frac{3 \text{ dB}}{0.0022 \cdot 3.5 \text{ MHz}} \approx 390 \text{ cm}$

Shadows and enhancements

Shadows and enhancements

Introduction

Ultrasound acoustics

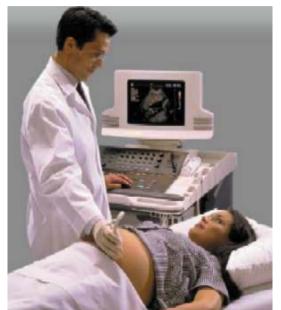
Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

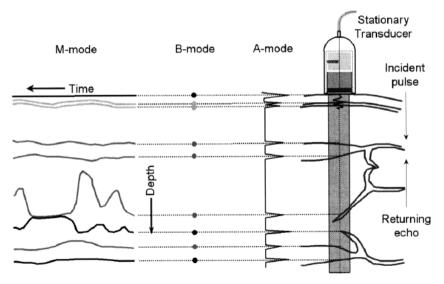
Generation/detection

Generation Steering/Beamforming Focusing Processing and control Artefacts


Medical ultrasound devices

Medical ultrasound devices

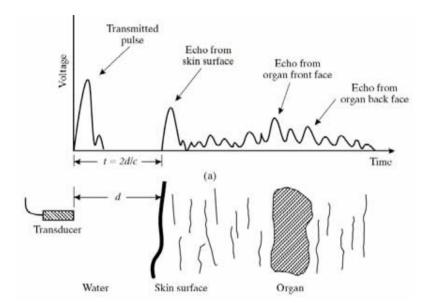
Medical ultrasound devices

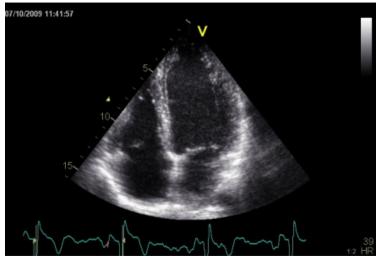

Medical applications of ultrasound imaging

- Cardiology (heart)
- Gynecology: breast, fetus (pregnancy)
- Internal organs: liver, kidney, thyroid gland
- Intravascular ultrasound
- Therapeutic ultrasound: shock wave (kidney stone), thermal effects (rehabilitation)

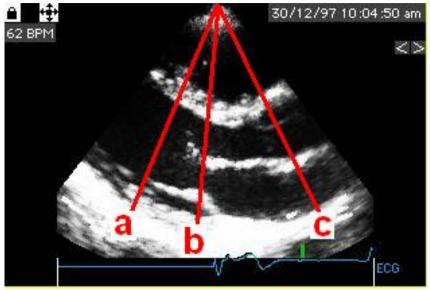
Imaging modes

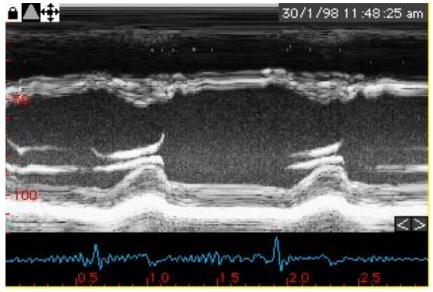
- A osciloscopic, intensity/time
- **B** 2D in the probe plane
- C 2D perpendicular
- M/TM 1D+time
 - Q Doppler (speed)

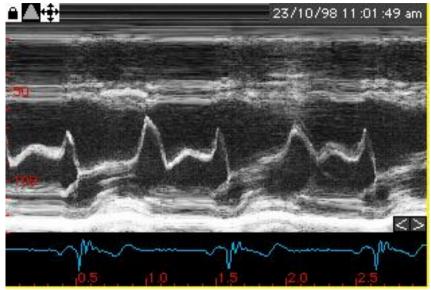

Imaging modes (2)

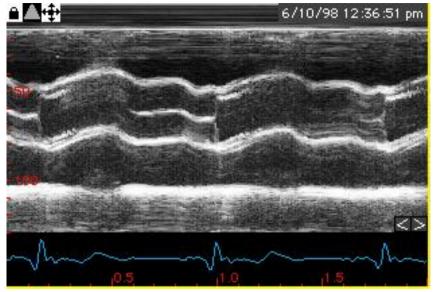

Resultant M-mode display

Valve Leaflets


A-mode (Amplitude)




B-mode


Heart

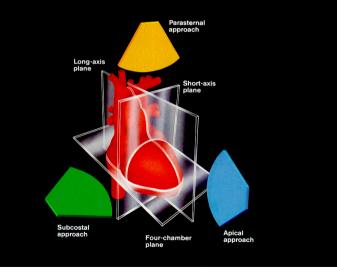
h

Introduction

Ultrasound acoustics

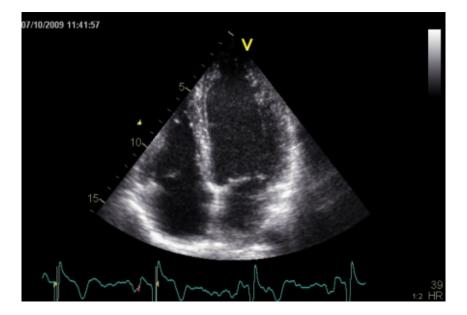
Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

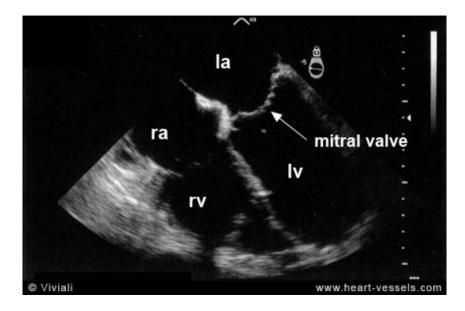

Devices

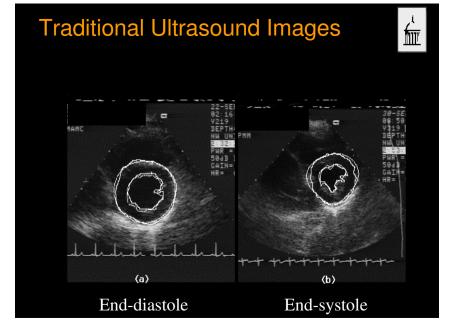
Cardiologic US Intravascular US

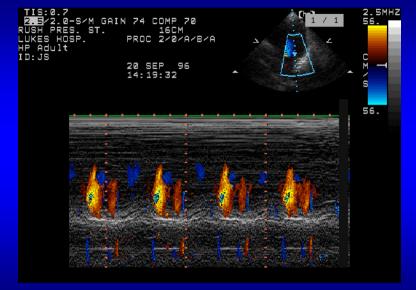
Generation/detection


Generation Steering/Beamforming Focusing Processing and control Artefacts

Conventional Cardiac 2D Ultrasound




Í


Heart

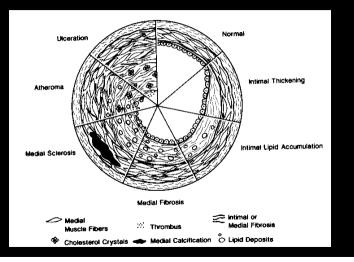
Heart

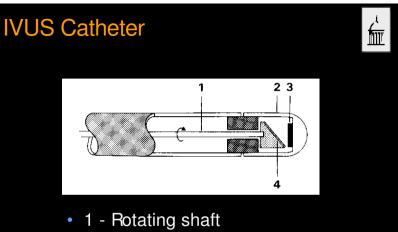
Introduction

Ultrasound acoustics

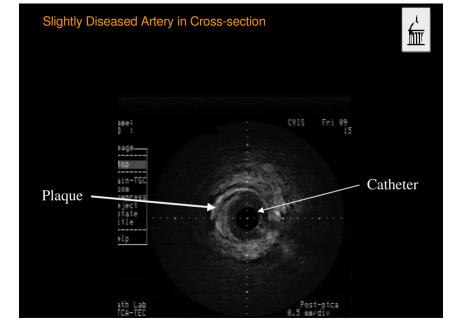
Waves Wave equation Reflection and refraction Interface reflection Attenuation

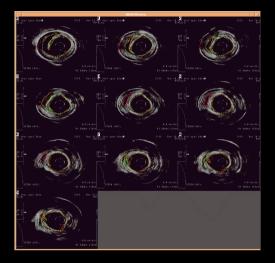
Medical ultrasound

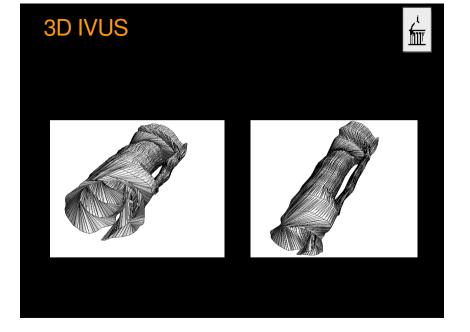

Devices Cardiologic US Intravascular US


${\sf Generation}/{\sf detection}$

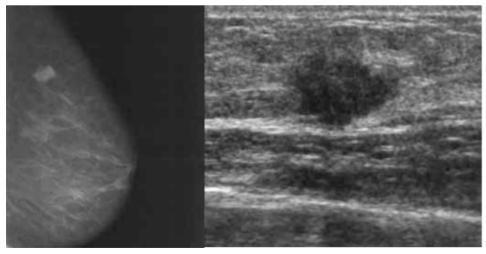
Generation Steering/Beamforming Focusing Processing and control Artefacts


Progression of Vascular Disease




- 2 Acoustic window
- 3 Ultrasound crystal
- 4 Rotating beveled acoustic mirror

An array of Images



Breast

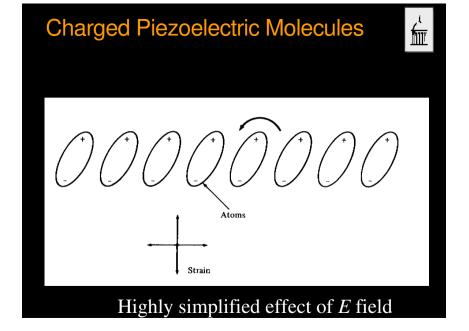
Introduction

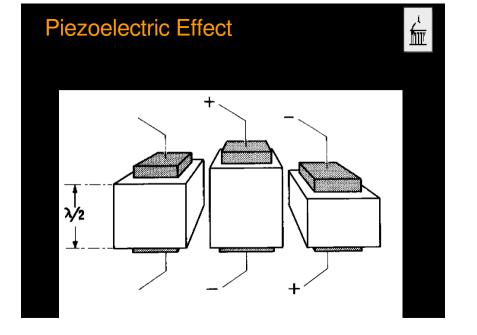
Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection

Medical ultrasound

Devices Cardiologic US Intravascular US

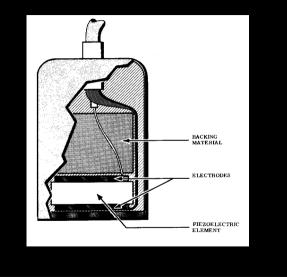

${\sf Generation}/{\sf detection}$


Generation Steering/Beamforming Focusing Processing and control Artefacts

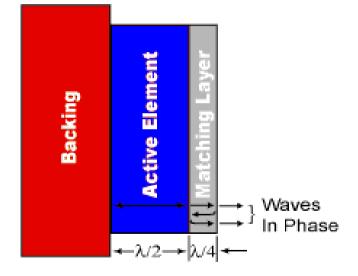
Pressure Generation

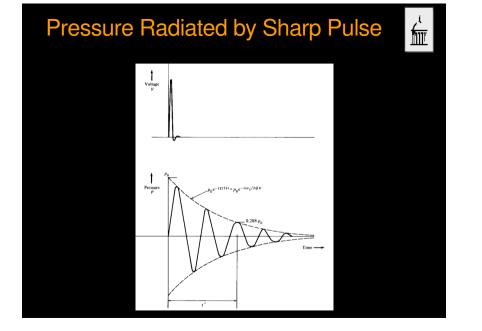
- Piezoelectric crystal
- 'piezo' means pressure, so piezoelectric means
 - pressure generated when electric field is applied
 - electric energy generated when pressure is applied

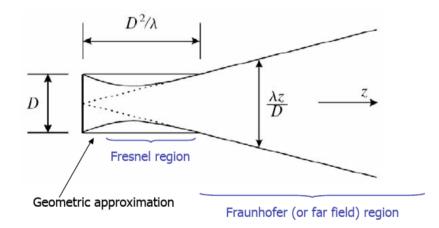
ŕ



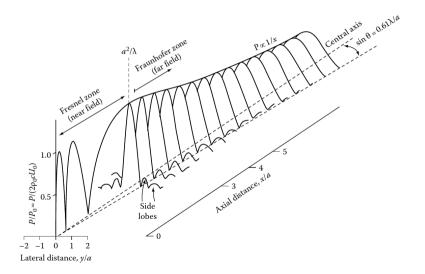
Transducer materials

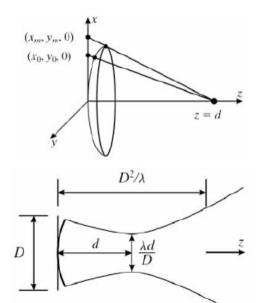

- **PZT** lead zirconate titanate, ceramic
 - High $Z \longrightarrow$ strong reflection
 - high resonance quality Q frequency selective, high sensitivity
- **PVDF** polyvinylidine difluoride, plastic
 - $\blacktriangleright \text{ Low } Z \longrightarrow \text{ low reflection}$
 - low resonance quality Q wider bandwith, lower sensitivity
- Composite materials
- Capacitive transducers

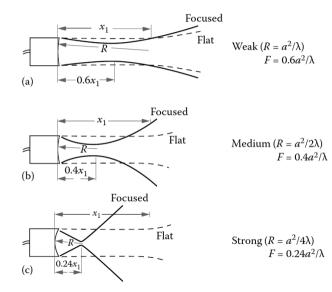

Transducer

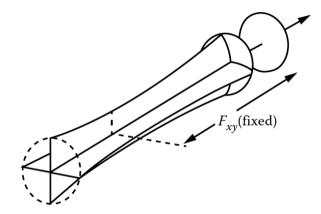

f

Impedance matching layer

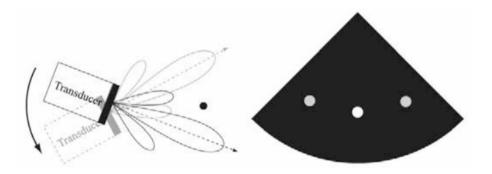



Beam pattern Plane/unfocused source


Beam pattern Plane/unfocused source


Focused beam pattern

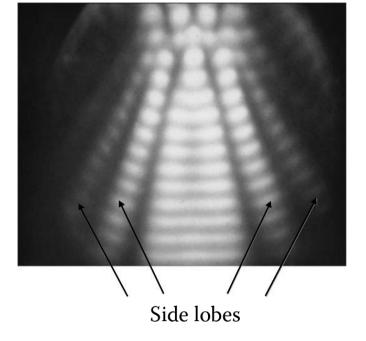
Focused beam pattern



Focused beam pattern

3D profile. Axial, transversal and lateral resolution

Lobes


Lobes

Main lobe — contains 84 % energy, angle

$$\sin\theta\approx\frac{1.22\lambda}{D}$$

Lobes

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

Medical ultrasound

Devices Cardiologic US Intravascular US

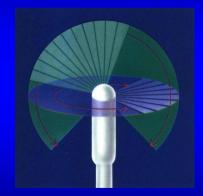
Generation/detection

Generation

${\sf Steering}/{\sf Beamforming}$

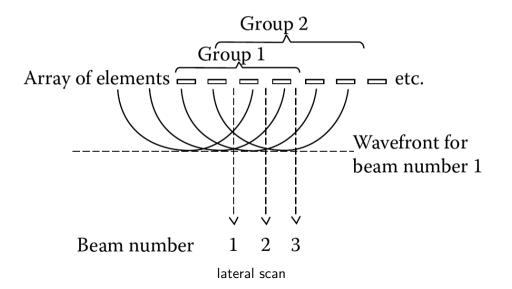
Focusing Processing and control Artefacts

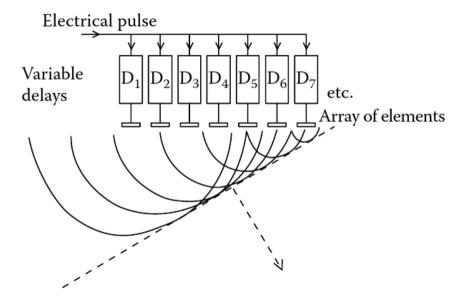
Beam steering




Electrical

UZV sonda s mech. rozkladem - Siemens


UZV sonda s mech. rozkladem - Siemens



Electronic beam steering

Electronic beam steering

Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

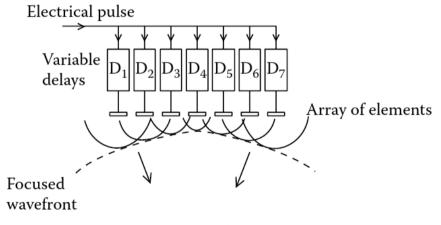
Medical ultrasound

Devices Cardiologic US Intravascular US

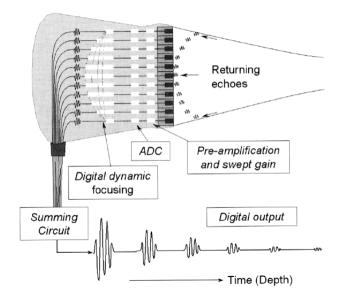
${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming

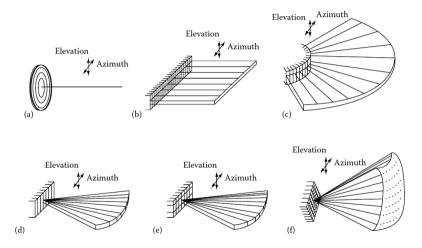
Focusing


Processing and control Artefacts

Focusing types


► Electronic

Electronic beam focusing



at transmit

Electronic beam focusing

Transducer array configurations

annular, linear, sector, phased-array, 1.5D phased array, 2D phased array

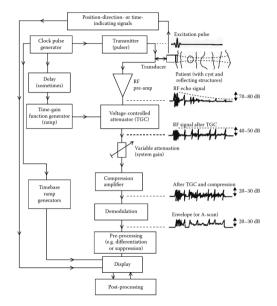
Introduction

Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

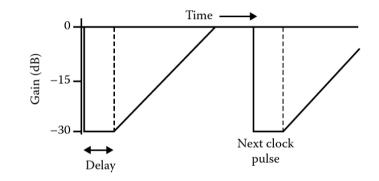
Medical ultrasound

Devices Cardiologic US Intravascular US

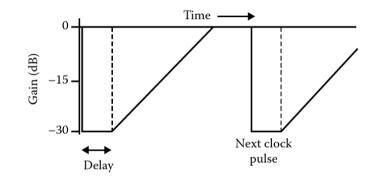

${\sf Generation}/{\sf detection}$

Generation Steering/Beamforming Focusing

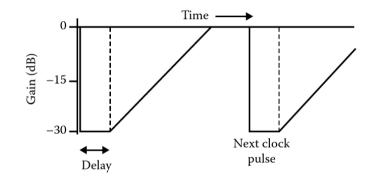
Processing and control


Artefacts

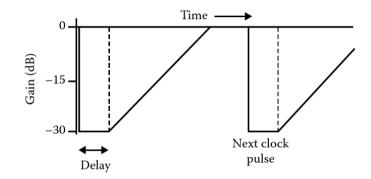
Scanner block diagram


RF processing

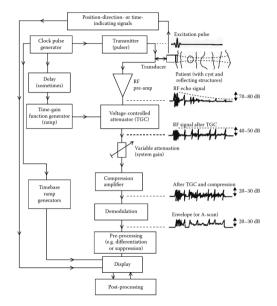
► Time gain control


► Time gain control

Demodulation — RF to envelope, (quadrature) detector


► Time gain control

- Demodulation RF to envelope, (quadrature) detector
- Compression amplifier (50 dB range to $20 \sim 30 \, \text{dB}$ range)



Time gain control

- Demodulation RF to envelope, (quadrature) detector
- Compression amplifier (50 dB range to 20 ~ 30 dB range)
- Geometry conversion (interpolation)

Scanner block diagram

Introduction

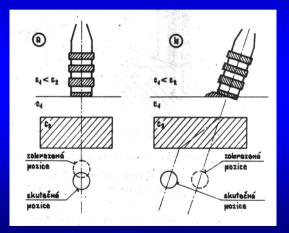
Ultrasound acoustics

Waves Wave equation Reflection and refraction Interface reflection Attenuation

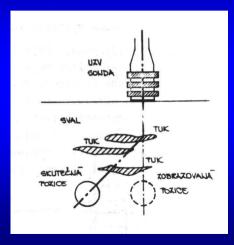
Medical ultrasound

Devices Cardiologic US Intravascular US

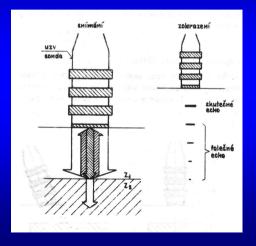
${\sf Generation}/{\sf detection}$

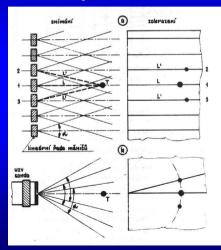

Generation Steering/Beamforming Focusing Processing and control Artefacts

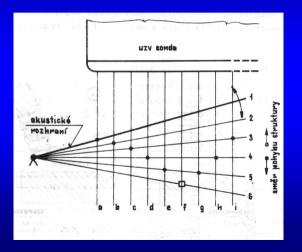
Artefacts


Due to

- Ultrasound speed variability (change of the speed of the wave, the composition of the tissues)
- Reflection (multiple reflection)
- Finite beam width
- Movement (movement of the tissue structures)


- změnou rychlosti šíření UZV vlny,


- skladbou tkání,


- násobnou reflexí,

- vlivem konečné šířky UZV svazku,

- pohybem tkáňových struktur,

