fMR Processing(2) Ing. Jan Šanda

Today goal: Group analysis of functional activity during FingerTapping task in eight subjects using SPM12

- Looking for average activity in group of eight measured subjects
- Is there any common activation? Are the subject's activations on the same place in the brain
- Do the processing of fMR data for subjects Subj01 to Subj08 following the pipeline
- 2. Do the group statistics and display the results

fMR processing (1. excercise) Pipeline

Conversion of data:DICOM -> NIFTI (done; *.nii suffix)Slice Timing: temporal correction(TR vs. HRF)(skipping this step)

- **1. Realignment** of functional data spatial correction of data in time
- 2. Smoothing with Gauss filter kernel
- 3. Model specification + Review
- 4. Estimate Model
- 5. Results + Display

fMR processing (2. excercise) Pipeline

Conversion of data:

DICOM -> NIFTI

- 1. Realignment of functional data spatial correction of data in time
- 2. Segment mean fMR segmentation (WhiteMatter, GrayMatter, CSF)
- **3.** Normalise functional data to a standard MNI space (non/linear transformation)
- 4. Smoothing functional data with Gauss filter kernel
- 5. Model specification + Review
- 6. Estimate Model
- 7. Results + Display

DO IT FOR EACH SUBJECT Subj01 – Subj08

... 2nd- level analysis

1. Realign data

MENU: Realign (Estimate & Reslice)

BATCH EDITOR:

- a) Data Session ... select all fMR files (*fMR*.nii*)
- **b) Run** batch

2. Segment structural data

MENU: Segment

BATCH EDITOR:

- a) Volumes ... select mean data (meanfMR*.nii)
- **b)** Deformation fields (last parameter)... Forward (transform from functional to MNI152)
- c) All other parameters as default!
- **d) Run** batch (could be time consuming little bit **∢**)
- e) Display or Check Reg output files

Output:

- *c1meanfMR*.nii* (gray matter probability)
- *c2meanfMR*.nii* (white matter prob.)
- *c3meanfMR*.nii* (CSF prob.)
- y_meanfMR*.nii (deformation field)
- *C4mean*.nii, c5mean*.nii* (non brain

meanfMR

:1* = gray matter

C2* = white matter

3* = cerebro-spinal luid

3. Normalise functional data

MENU: Normalise (Write)

BATCH EDITOR:

- **a)** Data Subject Deformation Field ... select Forward deformation Field (*y_meanfMR*.nii*)
- **b) Images to Write** ... all realigned functional images (*rfMR*.nii*) *meanfMR*.nii*
- **c) Voxel sizes** ... [2 2 2]
- d) Run batch
- e) Display output files

Output:

- 150 volumes of *wrfMR*.nii* (functional data in standard *MNI152 space*)
- 1 volume wmeanfMR*.nii

4. Smooth functional data (realigned and normalised data)

MENU: Smooth

BATCH EDITOR:

- a) Images to smooth ... select all wrfMR*.nii f
- b) FWHM ... [8 8 8] (FWHM of the Gaussian smoothing kernel in mm)
- c) Run batch

承 Images	to smooth		_		×
Dir Up Prev Drive dcm fsl model	D:\zsl\fMR_data\zk84\fMR_vi D:\zsl\fMR_data\zk84\fMR_vi D:\zsl\fMR_data\zk84\fMR_vi	ata\zk84\fMR_visual sual wrMF9710080138- wrMF9710080138- wrMF9710080138- wrMF9710080138- wrMF9710080138- wrMF9710080138- wrMF9710080138- wrMF9710080138-	0008-0 0008-0 0008-0 0008-0 0008-0 0008-0 0008-0 0008-0	00001- 00002- 00003- 00004- 00005- 00005- 00006- 00007- 00008-	00 00 00 00 00 00 00 00 00 00
? Ed Frames Selected	Rec Done O/[1] files. (Initial selection.)	Filter Reset	wrM	F.*	

Output:

- Smoothed functional files (all with prefix "swrfMR*.ni

swmeanfMR

5. Model specification (1st-level)

MENU: Specify 1st-level

BATCH EDITOR:

- a) Directory ... select (pre-created) folder "model"to store model and statistics results
- b) Units for design ... Scans
- c) Interscan interval ... 2 (equals to TR)
- d) Data & Design
 - a) Scans ... select swr*.nii data
 - b) Conditions
 - a) Condition
 - a) Name ... name of processed paradigm, for example LeftHandFingerTapping / RightHandFingerTapping
 - **b) Onset** ... vector of scans where the activations begin
 - c) **Durations** ... duration of activation (in scans)
- e) Run batch

Output: - SPM.mat file (GLM model)

fMR Statistics

5. Model specification - Conditions

- 1. Condition LeftHand
 - Name ... LeftHandFingerTapping
 - Onset ... [16 61 106]
 - Durations ... **15**
- 2. Condition **RightHand**
 - Name ... RightHandFingerTapping
 - Onset ... [31 76 121]
 - Durations ... **15**

6. Model estimation

MENU: Estimate

BATCH EDITOR:

- a) Select SPM.mat ... select SPM.mat
- b) Run batch

7. Results (define contrast)

MENU: Results Select SPM.mat

SPM contrast manager:

- a) Define new contrast
 Name: LeftHand / RightHand
 type: t-contrast
 contrast: 100/010 ...submit
- b) OK
- c) Done

LeftHand

8. Results

RESULTS:

apply masking ... none P value adjustment to control ... none/FWE Threshold {T or p value} ... 0.001/0.05 & extent threshold {voxels} ... 25

Statistics: p-values adjusted for search volume set p

set-leve	el	C	luster-leve				р	eak-level			mm	nm m	• m
р	С	P _{FWE-corr}	$q_{_{\rm FDR-corr}}$	k _E	р _{ипсогг}	$P_{\rm FWE-corr}$	$q_{\rm FDR-corr}$	Т	(Z _E)	р _{ипсогг}			
0.000	12	0.000	0.000	2169	0.000	0.000	0.000	14.82	Inf	0.000	40	-18	66
						0.000	0.000	10.87	Inf	0.000	32	-24	56
						0.000	0.000	9.77	Inf	0.000	16	-10	80
		0.000	0.000	233	0.000	0.000	0.000	9.34	Inf	0.000	-54	8	44
						0.000	0.009	6.41	6.00	0.000	-56	-2	48
						0.004	0.102	5.81	5.49	0.000	-58	6	20
		0.000	0.000	582	0.000	0.000	0.000	9.00	Inf	0.000	-38	-8	64
						0.000	0.000	7.27	6.70	0.000	-16	-4	74
						0.001	0.027	6.16	5.79	0.000	-24	-12	60
		0.000	0.000	269	0.000	0.000	0.000	7.99	7.25	0.000	-18	-60	-16
		0.000	0.000	221	0.000	0.000	0.000	7.65	6.99	0.000	-6	0	54
						0.000	0.000	7.13	6.59	0.000	-4	-2	62
		0.000	0.000	124	0.000	0.000	0.000	7.29	6.71	0.000	-44	-44	62
						0.023	0.484	5.40	5.14	0.000	-34	-48	68
		0.000	0.000	83	0.000	0.000	0.002	6.79	6.31	0.000	28	-46	-26
		0.000	0.000	32	0.000	0.000	0.016	6.29	5.90	0.000	58	4	16
		0.000	0.000	39	0.000	0.001	0.020	6.23	5.85	0.000	-56	-26	48
		0.000	0.000	28	0.000	0.001	0.032	6.11	5.75	0.000	-26	-56	-52
		0.000	0.000	50	0.000	0.001	0.040	6.05	5.70	0.000	20	-66	-50
		0.000	0.000	33	0.000	0.003	0.071	5.91	5.58	0.000	-42	-32	44

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 5.20, p = 0.000 (0.050) Extent threshold: k = 25 voxels, p = 0.001 (0.000) Expected voxels per cluster, <k> = 1.588 Expected number of clusters, <c> = 0.00 FWEp: 5.198, FDRp: 6.052, FWEc: 1, FDRc: 10

Degrees of freedom = [1.0, 143.0] FWHM = 8.1 8.1 7.9 mm mm mm; 4.1 4.0 3.9 {voxels} Volume: 1882440 = 235305 voxels = 3393.1 resels Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 64.76 voxels)

Display Results

Results can be displayed with **overlay** command (in results window, Slices, Section, Montage)

As a background image use the MNI ter images from the %SPM12%/canonical/avg*.nii

... do the preview pipeline for subjects

Subj01 Subj02 Subj03 Subj04 Subj05 Subj06 Subj07 Subj08

File structure for each subject

- SubjXX
 - fMR_hk
 - fMR_hk*.nii (150 origin files)
 - rfMR_hk*.nii (150 realigned files)
 - rp_fMR_hk*.txt 1 realignment parameters txt-file
 - meanfMR_hk*.nii 1 mean functioanl file
 - wrfMR_hk*.nii (150 realigned and normalised files)
 - swrfMR_hk*.nii (150 realigned, normalised and smoothed files)
 - model
 - *beta_0001.nii beta values of GLM model, for first predictor (predictor of acitavtions)*
 - beta_0002.nii beta values of GLM model, for second predictor (predictor of acitavtions)
 - *beta_0003.nii beta values of GLM model, for third predictor (constant predictor)*
 - con_0001.nii contrast file for first predictor IMPORTANT FOR GROUP ANALYSIS!!!
 - con_0002.nii contrast file for second predictor IMPORTANT FOR GROUP ANALYSIS!!!
 - mask.nii binar mask file, created automaticaly
 - ResMS.nii residuals file, errors of the GLM model
 - RPV.nii ressels per voxel file
 - SPM.matmat-file, where GLM model is stored
 - spmT_0001.nii t-statistics T-values

• t1

• t1.nii 1 structural t1-weighted image

2nd-level (GROUP ANALYSIS)

8. Model specification (group mean)

MENU: Specify 2nd-level

BATCH EDITOR:

- a) Directory ... select folder (for example "group_mean_Left")
- **b)** Design One-sample t-test Scans … select all *con_0001.nii* files from model folder of each subject (8x con_0001.nii)
- c) Run batch

9. Model estimation (group mean)

MENU: Estimate

BATCH EDITOR:

a) Select SPM.mat ... select SPM.mat

b) Run batch

10. Results – define contrast (group mean)

MENU: Results Select SPM.mat

SPM contrast manager:

a) Define new contrast Name: group_*mean_Left* type: *t-contrast* contrast: 1 ...submit

b) OK

c) Done

11. Results (group mean)

RESULTS:

apply masking ... none P value adjustment to control ... **none** Threshold {T or p value} ... 0.001 & extent threshold {voxels} ... 25

Statistics: p-values adjusted for search volume

set-leve	el	C	luster-leve				p	eak-level					, m
р	С	P _{FWE-corr}	q _{FDR-corr}	k _E	р _{ипсогг}	P _{FWE-corr}	q _{FDR-corr}	Т	(Z _E)	р _{ипсогг}	1111111		
0.000	9	0.000	0.000	1901	0.000	0.007	0.175	23.36	5.40	0.000	28	-6	46
						0.016	0.175	20.66	5.25	0.000	48	-14	52
						0.048	0.208	17.65	5.04	0.000	36	-8	64
		0.014	0.005	119	0.000	0.654	0.457	12.01	4.51	0.000	22	-58	-30
		0.000	0.000	618	0.000	0.802	0.470	11.55	4.46	0.000	-14	-54	-20
						0.912	0.578	10.35	4.30	0.000	-22	-56	-20
						0.990	0.641	8.68	4.04	0.000	-26	-48	-28
		0.045	0.012	92	0.002	0.950	0.586	9.78	4.22	0.000	50	8	50
						1.000	0.854	6.61	3.61	0.000	58	10	28
						1.000	0.854	6.58	3.61	0.000	60	2	40
		0.155	0.036	66	0.006	0.996	0.694	8.22	3.95	0.000	-58	-4	42
						1.000	0.884	5.65	3.36	0.000	-50	0	46
						1.000	0.932	5.27	3.25	0.001	-48	-6	52
		0.755	0.203	30	0.046	1.000	0.868	6.07	3.48	0.000	4	0	50
		0.823	0.203	27	0.057	1.000	0.868	6.05	3.47	0.000	48	-60	0
		0.823	0.203	27	0.057	1.000	0.868	5.84	3.42	0.000	-44	-28	56
		0.457	0.108	43	0.020	1.000	0.884	5.65	3.36	0.000	-18	-62	-52

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 4.79, p = 0.001 (1.000)Extent threshold: k = 25 voxels, p = 0.066 (0.864)Expected voxels per cluster, <k > 7.413Expected number of clusters, <c > 2.00FWED: 17.528. FDRD: Inf. FWEC: 92. FDRC: 66 Degrees of freedom = [1.0, 7.0] FWHM = 12.0 11.9 11.5 mm mm mm; 6.0 6.0 5.8 {voxels} Volume: 1651312 = 206414 voxels = 926.2 resels Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 207.23 voxels)

group_mean_Left

Statistics: p-values adjusted for search volume

set-level		(cluster-leve	I	peak-level							~~ ~	~
р	С	P _{FWE-corr}	q _{FDR-corr}	k _E	P _{uncorr}	P _{FWE-corr}	q _{FDR-corr}	Т	(Z _E)	р _{ипсогг}			
0.000	9	0.000	0.000	1901	0.000	0.007	0.175	23.36	5.40	0.00	28	-6	46
						0.016	0.175	20.66	5.25	0.000			
						0.048	0.208	17.65	5.04	0.000	36	-8	64
		0.014	0.005	119	0.000	0.654	0.457	12.01	4.51	0.000	22	-58	-30
		0.000	0.000	618	0.000	0.802	0.470	11.55	4.46	0.000	-14	-54	-20
						0.912	0.578	10.35	4.30	0.000	-22	-56	-20
						0.990	0.641	8.68	4.04	0.000	-26	-48	-28
		0.045	0.012	92	0.002	0.950	0.586	9.78	4.22	0.000	50	8	50
						1.000	0.854	6.61	3.61	0.000	58	10	28
						1.000	0.854	6.58	3.61	0.000	60	2	40
		0.155	0.036	66	0.006	0.996	0.694	8.22	3.95	0.000	-58	-4	42
						1.000	0.884	5.65	3.36	0.000	-50	0	46
						1.000	0.932	5.27	3.25	0.001	-48	-6	52
		0.755	0.203	30	0.046	1.000	0.868	6.07	3.48	0.000	4	0	50
		0.823	0.203	27	0.057	1.000	0.868	6.05	3.47	0.000	48	-60	0
		0.823	0.203	27	0.057	1.000	0.868	5.84	3.42	0.000	-44	-28	56
		0.457	0.108	43	0.020	1.000	0.884	5.65	3.36	0.000	-18	-62	-52

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 4.79, p = 0.001 (1.000) Extent threshold: k = 25 voxels, p = 0.066 (0.864) Expected voxels per cluster, <k> = 7.413 Expected number of clusters, <c> = 2.00 FWEp: 17.528, FDRp: Inf, FWEc: 92, FDRc: 66 Degrees of freedom = [1.0, 7.0] FWHM = 12.0 11.9 11.5 mm mm mm; 6.0 6.0 5.8 {voxels} Volume: 1651312 = 206414 voxels = 926.2 resels Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 207.23 voxels)

Design matrix

Coordinates of maximal activation in MNI space

Use

https://bioimagesuiteweb.github.io/webapp/mni2tal.html To find the brain area, which is activated:

List of Brodmann areas: https://en.wikipedia.org/wiki/Brodmann area

Display Results

Results can be displayed with **overlay** command (in results window, Slices, Section, Montage)

As a background image use the MNI ter images from the %SPM12%/canonical/avg*.nii

Homework

- Do the 1st-level analysis for both hands in all eight measured subjects. Folow the pipeline from the 2nd excercise.
- Do the group analysis folowing the pipeline from the 2nd excercise. Show the mean activation in the group for left (con_ 0001) and right (con_0002) hand.
- Describe and Display results of the 2nd-level analysis, find main areas with statisticaly significant activations (up to three main areas). Use MNI atlas by your own choice.

Hint: batch editor is programable and could be helpful with the repeating commands