Affinity Segmentation and Clustering

Czech Technical University in Prague
O. Shekhovtsov

- → Semi-Supervised Segmentation
 - Energy Minimization Roadmap
 - Dirichlet Energy
 - Label Propagation
 - Random Walker
 - Soft Label Propagation & GCN
- → Unsupervised Segmentation / Clustering
 - k-Means
 - Spectral Clustering
 - Normalized Cut

Setup

Graph G = (V, E)

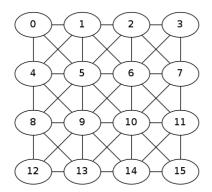
Node features $f_i \in \mathbb{R}^d$, $i \in V$

Affinity weights $A_{ij} \in \mathbb{R}^d$, $(i,j) \in E$

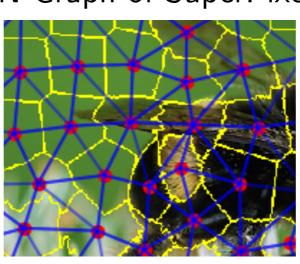
Examples

NN Graph of Pixels





NN Graph of SuperPixels

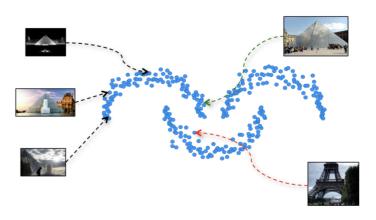


 f_i – e.g. color, texture

 f_i – RGB color $A_{ij}=e^{-\frac{(f_i-f_j)^2}{\sigma_0^2}}e^{-\frac{(i-j)^2}{\sigma_1^2}}$ – bilateral (color-spatial) affinity

Segmentation, 3D reconstruction

Set of Images



 f_i – image descriptor

 $A_{ij} \propto \operatorname{Sim}(f_i, f_j)$

E – support set

Clustering, Retrieval, visualization

Energy Minimization Roadmap

Energy Minimization Problem

Assign labelling $x \colon V \to C$ by

$$\min_{x} \sum_{ij} A_{ij} \mathcal{V}(x_i, x_j) + \sum_{i} \mathcal{U}_i(x_i)$$

 $\mathcal{V}(x_i,x_j)$ – penalizes different labels $\mathcal{U}_i(x_i)$ – fidelity to evidence. Special case: partial label assignment

♦ Roadmap:

- C ordered, $\mathcal{V}(x_i, x_j)$ convex function of the difference $(x_i x_j) \Rightarrow \text{minimum}$ cut. (polynomial time, very efficient in practice).
- $V(x_i, x_j) = [x_i \neq x_j] \Rightarrow 2$ labels back to previous case. More than 2 labels Potts model / multiway cut. (NP-hard, approximation algorithms exist).
- ullet Relaxed formulations: $X \colon V \to \mathbb{R}^C$ one-hot or soft labels.

Dirichlet Energy on Graphs

- Let x be a scalar function on the nodes: $x: V \to \mathbb{R}$ (a vector in \mathbb{R}^V)
- Dirichlet energy: $\mathcal{E}(x) = \frac{1}{2} \sum_{i,j} A_{ij} ||x_i x_j||^2$
 - ullet $\mathcal{E}(x)$ is small when nodes with strong A_{ij} have similar values $x_i pprox x_j$
 - ullet Measures the smoothness of x on the graph w.r.t. affinity A
- As quadratic form
 - Denote degree matrix $D = \operatorname{diag}(d_1, \dots, d_n)$, $d_i = \sum_j A_{ij}$

$$\mathcal{E}(x) = \frac{1}{2} \sum_{ij} A_{ij} (x_i^2 + x_j^2 - 2x_i x_j) = x^\mathsf{T} D x - x^\mathsf{T} A x = x^\mathsf{T} (D - A) x = x^\mathsf{T} L x$$

- L = D A is the **graph Laplacian** matrix
- Analogy to continuous Laplacian:
 - Let B be the discrete derivative: $(Bx)_e = \sqrt{A_{ij}}(x_i x_j)$ for edge e = (i, j), i.e., weighted finite differences along each *directed* edge
 - The energy can be written as

$$\mathcal{E}(x) = \sum_{e} (Bx)_{e}^{2} = \|Bx\|^{2} = x^{\top}B^{\top}Bx$$

- So $L = B^{\top}B$, analogous to $\Delta = \nabla \cdot \nabla$ (divergence of derivative)
- ullet Exercise: verify what B an L are for a 1D chain graph

Setup:

- ullet V=(L,U) partition into labeled and unlabelled nodes
- \underline{X}_L fixed one-hot labels
- X_U unknown one-hot labels

Energy

• Note that $||X_i - X_j||^2 = 2$ if $X_i \neq X_j$ and 0 otherwise, so for one-hot labels we can write the Potts energy as.

$$\mathcal{E}(X) = \frac{1}{2} \sum_{i,j} A_{ij} ||X_i - X_j||^2 = \sum_k \frac{1}{2} \sum_{i,j} A_{ij} (X_{ik} - X_{jk})^2 = \sum_k \mathcal{E}(X_{:k}),$$

i.e., sum of Dirichlet energies over each class indicator function.

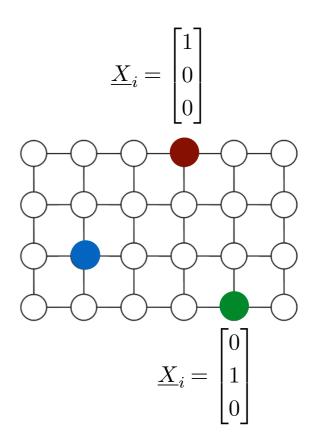
• In the matrix form:

$$\mathcal{E}(X) = \operatorname{Tr}(X^{\top} L X).$$

The Label Propagation Problem:

$$\min_{X} \quad \mathcal{E}(X) \quad \text{s.t.} \quad X_i = \underline{X}_i, \ \forall i \in L$$

- Seeks the most smooth assignment of labels while exactly matching the labeled nodes.
- ullet Relaxation: allow X_i to be soft labels in \mathbb{R}^C .



Label Propagation: Solution

• In matrix form, with nodes reordered so that labeled nodes come first:

$$X = \begin{bmatrix} X_L \\ X_U \end{bmatrix}, \quad L = \begin{bmatrix} L_{LL} & L_{LU} \\ L_{UL} & L_{UU} \end{bmatrix},$$

The energy is

$$\mathcal{E}(X) = \text{Tr}(X_L^{\top} L_{LL} X_L + X_L^{\top} L_{LU} X_U + X_U^{\top} L_{UL} X_L + X_U^{\top} L_{UU} X_U)$$

• Differentiate with respect to X_U (X_L is fixed) and set the gradient to zero:

$$\frac{\partial \mathcal{E}}{\partial X_U} = 2L_{UU}X_U + 2L_{UL}X_L = 0 \Longrightarrow \qquad \boxed{L_{UU}X_U = -L_{UL}X_L}$$

- Assuming L_{UU} is invertible (each unlabeled node connects to at least one labeled node)
- Closed form solution: $X_U^* = -L_{UU}^{-1}L_{UL}X_L$

- Fixed Point Equation:
 - Substitute L = D A in the block system:

$$(D_{UU} - A_{UU})X_U = A_{UL}X_L$$

$$\Longrightarrow X_U = D_{UU}^{-1}A_{UU}X_U + D_{UU}^{-1}A_{UL}X_L$$

• Define the row-stochastic adjacency (random-walk) matrix $P = D^{-1}A$. Then:

$$X_U = P_{UU}X_U + P_{UL}X_L$$

This is a fixed-point equation.

Label Propagation Algorithm

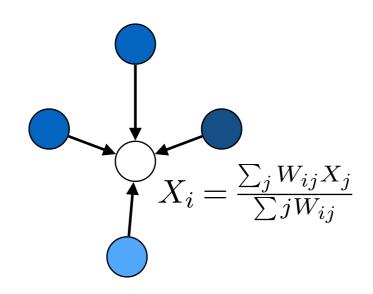
Initialization: $X_U^{(0)} = 0$ (or random) Iteration:

$$X_U^{(t+1)} = P_{UU}X_U^{(t)} + P_{UL}X_L, \quad X_L \text{ fixed} \label{eq:XU}$$

$$X_i^{(t+1)} = \frac{1}{d_i} \sum_j A_{ij} X_j^{(t)} \quad \forall i \in U$$

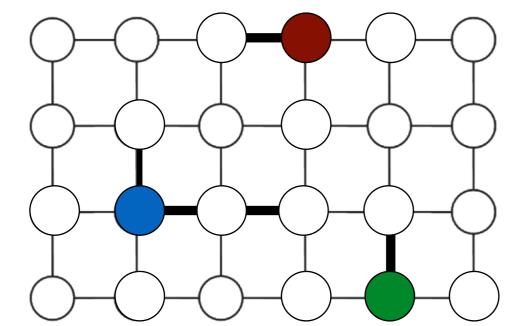
$$X_U^{(t)} \longrightarrow X_U^*$$
 – the optimal solution

• Exercise: L = D - A does not depend on A_{ii} , but the iteration does?

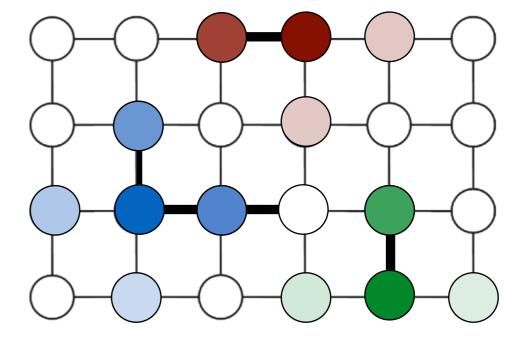


Label Propagation: Example

Initialization

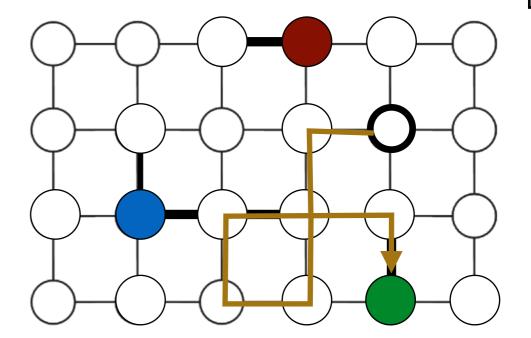


Step 1



- kind of diffusing
- faster along strong edges

- "Algorithm":
 - Start from node *i*
 - Move to random node j with probability proportional to A_{ij}
 - Until hitting a labelled node
 - X_{ik} probability of hitting a node with label
 - Decide label of i as $\operatorname{argmax}_k X_{ik}$



Expanding hit probabilities conditioned on the first step:

$$X_{ik} = \sum_{j \in \mathcal{N}(i)} \underbrace{\mathbb{P}[\text{walker steps from } i \text{ to } j]}_{P_{ij}} \cdot \underbrace{\mathbb{P}[\text{first hit label } k \text{ starting from } j]}_{X_{jk}}.$$

Transition probability P_{ij} is proportional to edge weight: $P_{ij} = \frac{A_{ij}}{d_i}$, $d_i = \sum_j A_{ij}$. Terefore, for each unlabeled node $i \in U$, the first-hit probability satisfies

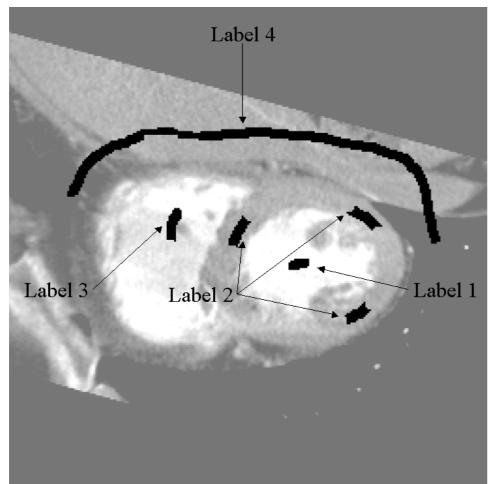
$$\forall i \in U \quad X_{ik} = \sum_{j} P_{ij} X_{jk}$$

 $X_U = P_{UU}X_U + P_{UL}X_L$ — same fixed point equation

- The fixed-point equation for the first-hit probabilities is equivalent to the label propagation update rule.
- ullet Thus, the solution X_U minimizes the Laplacian energy with hard label constraints can solve it by any method
- The same X_U is the matrix of first-hit probabilities \Rightarrow interpretation of the relaxed labels $X \in \mathbb{R}^{V \times C}$.
- Not guaranteed to match the optimal discrete segmentation.
- The reverse process would be a stochastic generative model that starts from seeds (absorbing nodes) and diffuses backward along edges to produce plausible node values. Nowadays we have e.g. "Random Walk Diffusion for Efficient Large-Scale Graph Generation", for tasks like designing new molecular structures.

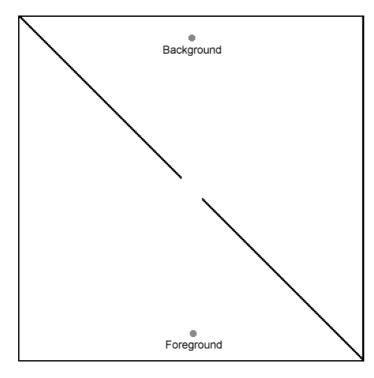
Examples

11

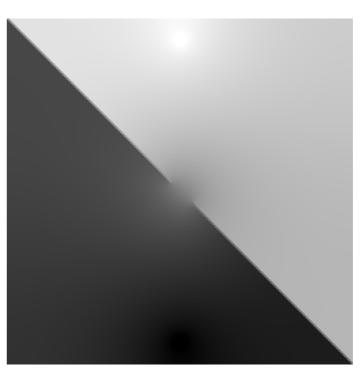


(b) Seeds indicating four objects

(c) Resulting segmentation



(a) Original



(d) Probabilities

Normalized Label Propagation

- Reparameterization
 - Define $Y = D^{1/2}X \implies X = D^{-1/2}Y$,
 - Substituting into the energy we obtain:

$$\mathcal{E}(X) = \operatorname{Tr}\left(X^{\top}LX\right) = \operatorname{Tr}\left(Y^{\top}D^{-\frac{1}{2}}LD^{-\frac{1}{2}}Y\right) = \operatorname{Tr}(Y^{\top}\mathcal{L}_{\operatorname{sym}}Y) =: \mathcal{E}(Y),$$

with the symmetric normalized Laplacian

$$\mathcal{L}_{ ext{sym}} = I - D^{-\frac{1}{2}} A D^{-\frac{1}{2}} = I - \tilde{A} \ , \quad ext{where } \tilde{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$$

The fixed-point iteration becomes:

$$Y_U \leftarrow \tilde{A}_{UU}Y_U + \tilde{A}_{UL}Y_L$$

- For $Y_L = D^{\frac{1}{2}}X_L$, it is an equivalent reformulation, $X = D^{-\frac{1}{2}}Y$ are the hitting probabilities
- lacktriangle For generic, Y_L , i.e. one-hot labels or features, it is a modified problem formulation
 - Used with generic data and dense graphs where affinities are constructed from feature similarity (node degrees can be very different)
 - The normalization reduces the influence of high-degree nodes and balances propagation

Soft Label Propagation

- ullet Soft label propagation relaxes the hard-clamp constraint and introduces a tradeoff between *smoothness* and *fidelity to initial labels* \underline{Y} (one-hot or zero)
 - Can be applied with unnormalized or normalized formulation
 - We apply it with normalized formulation, to connect to GCN (next)
- Soft Normalized Label Propagation
 - Energy minimization formulation:

$$\mathcal{J}(Y) = \alpha \underbrace{\mathrm{Tr}(Y^\mathsf{T} L_{\mathrm{sym}} Y)}_{\text{smoothness energy}} + (1 - \alpha) \frac{1}{2} \underbrace{\sum_{i} \|Y_i - \underline{Y}_i\|^2}_{\text{fidelity to input labels}}, \quad 0 < \alpha < 1$$

Closed-form solution:

$$Y^* = (\alpha \mathcal{L}_{\mathrm{sym}} + (1 - \alpha)I)^{-1} (1 - \alpha)\underline{Y}$$
 where $\mathcal{L}_{\mathrm{sym}} = I - \tilde{A}$ as above

Iterative update (normalized soft label propagation):

$$Y^{(t+1)} = \alpha \tilde{A} Y^{(t)} + (1 - \alpha) \underline{Y}$$

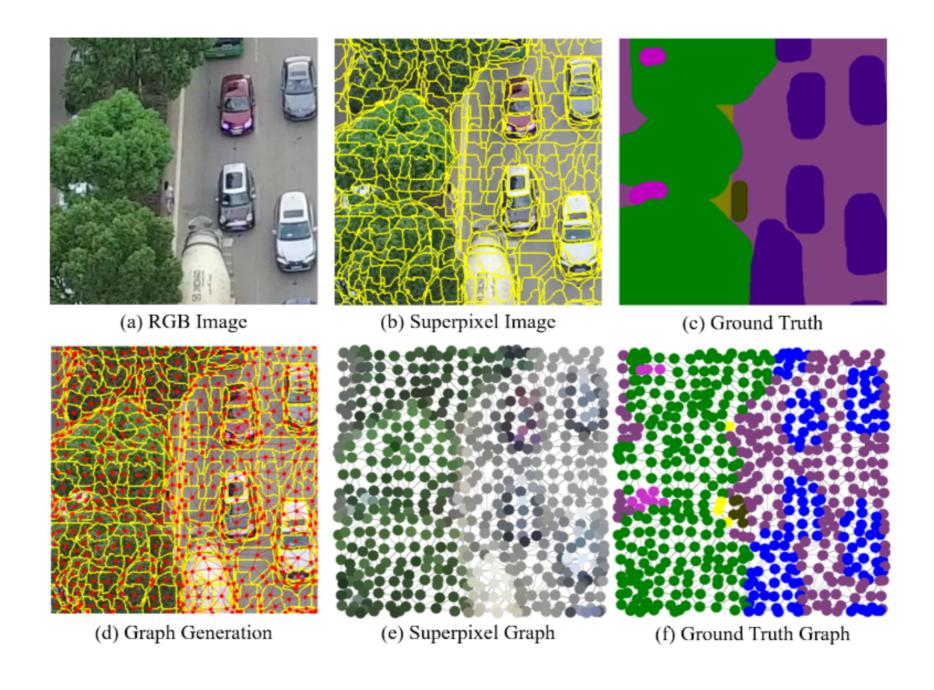
14

- Disclaimer
 - There are many ways to define convolutions on graphs (e.g. spectral w.r.t. to different variants of Laplacian, approximate, etc.)
 - This is just to illustrate how the concepts are related.
- Idea
 - One layer of (GCN by Kipf & Welling) can be seen as a single iteration of normalized soft label propagation, but with learnable weight matrices and nonlinearities:

$$Y^{(l+1)} = \sigma \left(\underbrace{\tilde{A}}_{\text{neighbour aggregation}} Y^{(l)} \underbrace{W^{(l)}}_{\text{local feature transform}}\right)$$

- ullet where $Y^{(l)}$ is the node feature matrix at layer l
- ullet $W^{(l)}$ is a learnable weight matrix
- $\sigma(\cdot)$ is a nonlinearity (e.g., ReLU)
- $\bullet \ \ \tilde{A} = D^{-1/2}AD^{-1/2}$ is the normalized adjacency, as before
- Observations:
 - GCNs use the same graph metric to propagate features across the graph
 - The first layer is initialized with the input: $Y^{(0)} = Y$ (features, not the labels)
 - It is trained so that after the last layer we can make decision, e.g. $\operatorname{argmax} CY_i$, independently for all nodes i.
 - \bullet The initial features are not mixed-in explicitly. Instead they add self-loops in A.

Superpixel-based Graph Convolutional Network for Semantic Segmentation, Yung et al.



Unsupervised Segmentation / Clustering

Overview

Unsupervised Segmentation (Clustering) Problem

- Partition the image (set of data) without any seed labels or class affinities
- Euclidean space: $\rightarrow k$ -means clustering
- ullet PSD similarity kernel $K(x,y) \to {\sf Kernel} \ k$ -means clustering (local optima, computation cost?)

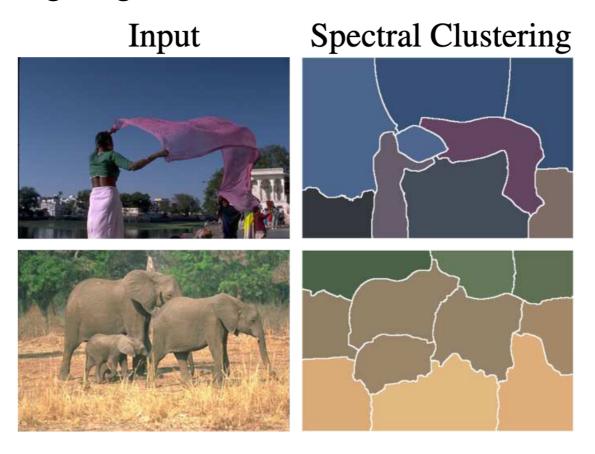
Spectral Clustering

- Graph G = (V, E)
- Affinity matrix $A_{ij} \ge 0$ for all ij, symmetric, need not be PSD
- Degree matrix $D = \operatorname{diag}(d)$, $d_i = \sum_j A_{ij}$
- Normalized Affinity matrix: $\tilde{A} = D^{-\frac{1}{2}} A D^{-\frac{1}{2}}$
- Algorithm:
 - 1. Compute top-k eigenvectors of \tilde{A} , exclude 1, \rightarrow matrix U of size $n \times k 1$ (note: same as smallest k eigenvectors of $L_{\mathrm{sym}} = I - A$)
 - 2. Each row U_i ,: gives an embedding of the node i in \mathbb{R}^{k-1}
 - 3. Run standard k-means clustering on rows of U
- Solves the same problem as kernel k-means clustering

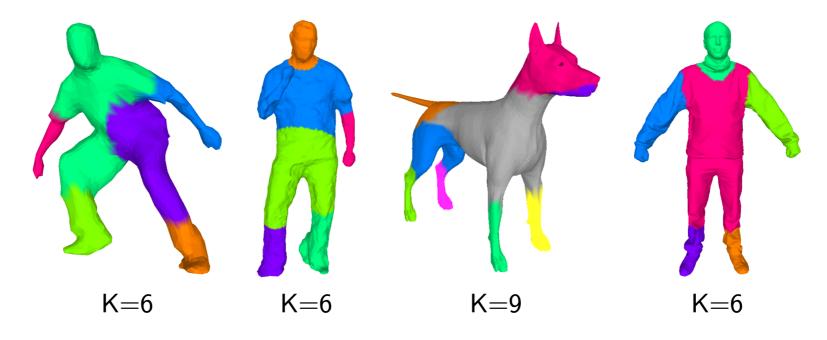
Normalized Cut

- Somewhat different objective, same relaxation \Rightarrow same solution
- 2-way Ncut is special case

Example 1: unsupervised image segmentation



Example 2: unsupervised 3D mesh segmentation



k-Means Clustering Problem

- ullet Let $f = \{f_1, \dots, f_n\}$ be data points in \mathbb{R}^d
- k-Means clustering problem: partition the data into k clusters C_1, \ldots, C_k with means μ_j :

$$\min_{C,\mu} \sum_{k} \sum_{i \in C_k} ||f_i - \mu_k||^2, \quad \Rightarrow \quad \mu_k = \frac{1}{|C_k|} \sum_{i \in C_k} f_i$$

• Equivalent objective substituting μ (exercise):

$$\min_{C} \sum_{k} \frac{1}{2|C_k|} \sum_{i,j \in C_k} ||f_i - f_j||^2$$

• Denoting $K_{ij} = \langle f_i, f_j \rangle$ – kernel matrix,

$$||f_i - f_j||^2 = K_{ii} + K_{jj} - 2K_{ij}$$

• Thus the *k*-means objective becomes:

$$\min_{C} \sum_{k} \frac{1}{|C_{k}|} \sum_{i,j \in C_{k}} \left(K_{ii} + K_{jj} - 2K_{ij} \right) = \left| 2 \sum_{i} K_{ii} - \sum_{k} \frac{2}{|C_{k}|} \sum_{i,j \in C_{k}} K_{ij} \right|$$

Combinatorial problem that needs only the kernel K

Spectral Clustering

k-Means Clustering Problem

$$\max_{C \text{ - partition of } V} \sum_{k} \frac{1}{|C_k|} \sum_{i,j \in C_k} K_{ij}$$

Rewriting Objective as Trace

• Express the objective using normalized cluster indicator matrix $X \in \mathbb{R}^{n \times k}$:

$$X_{ik} = \begin{cases} \frac{1}{\sqrt{|C_k|}}, & i \in C_k \\ 0, & \text{otherwise} \end{cases}, \quad X^\top X = I. \qquad \text{— combinatorial set } \mathcal{X}$$

$$\sum_{k} \frac{1}{|C_k|} \sum_{ij \in C_k} K_{ij} = \sum_{k} \frac{1}{|C_k|} \sum_{ij} X_{ik} X_{jk} K_{ij} = \text{Tr}(X^{\top} K X)$$

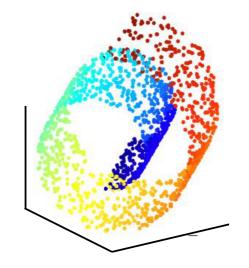
♦ Relaxation:

$$\max_{X \in \mathbb{R}^{n \times k}} \operatorname{Tr}(X^{\top} K X) \text{ s.t. } X^{\top} X = I$$

- ullet Solution: X is top-k normalized eigenvectors of K
- ullet For graphs, use $K = \tilde{W}$
- ullet Eigenvectors are the same as those of $\mathcal{L}_{ ext{sym}} = I ilde{W}$, eigenvalues are in reverse order
- The first eigenvector is always 1
- \bullet To recover partition, discretize X, by common k-means clustering

21

Laplacian Eigenvectors

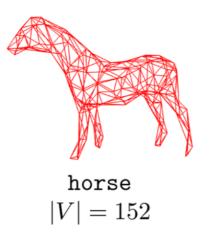


Example 1:

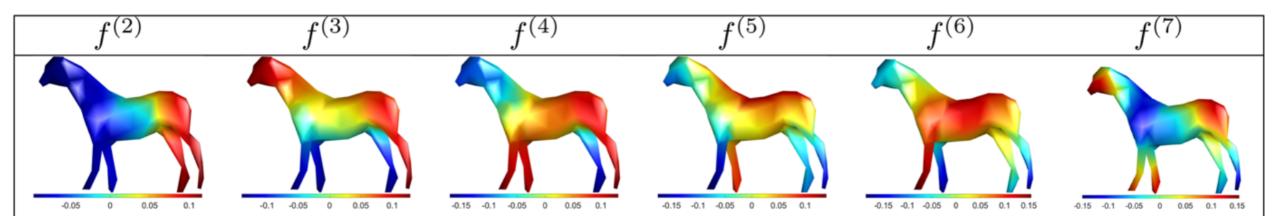
NN graph of data points embedded in 3D

First non-trivial eigenvector, in this example discovers the main ordering direction

Example 2:



Eigenvectors



Can be used as new features, aggregating the shape information and *invariant to isometric transforms*. Useful for (non-rigid) shape matching and positional encoding in Graph NNs.

Multiway Normalized Cut (Ncut)

$$\operatorname{Ncut}(C_1,\ldots,C_K) = \sum_{k=1}^K \frac{\operatorname{cut}(C_k,\bar{C}_k)}{\operatorname{vol}(C_k)}, \quad \operatorname{cut}(C_k,\bar{C}_k) = \sum_{i \in C_k, j \notin C_k} A_{ij}, \quad \operatorname{vol}(C_k) = \sum_{i \in C_k} d_i$$

- Equivalent objective: $\sum_k \frac{1}{\operatorname{vol}(C_k)} \sum_{i,j \in C_k} A_{ij}$, similar to k-means
- Trace Reformulation
 - Introduce the normalized cluster indicator matrix $X \in \mathbb{R}^{n \times k}$ with entries:

$$X_{ik} = \begin{cases} \frac{1}{\sqrt{\text{vol}(C_k)}}, & i \in C_k \\ 0, & \text{otherwise} \end{cases}, \quad X^\top D X = I$$

• Then the multiway Ncut can be written as trace:

$$Ncut(C_1, \ldots, C_k) = Tr(X^{\top}AX)$$

♦ Relaxation:

$$\max_{X : X^{\top}DX = I} \operatorname{Tr}(X^{\top}AX) = \left| \max_{Y : Y^{\top}X = I} \operatorname{Tr}(Y^{\top}\tilde{A}Y) \right|$$

- ullet Same relaxation as spectral clustering for \tilde{A}
- Special case k=2: reduces exactly to the 2-way Ncut problem and its relaxation