Question Answering and Dialogue Systems

Jan Pichl
Outline

- Natural Language Processing (NLP)
 - Natural Language Understanding (NLU)
 - Natural Language Generation (NLG)
- Question Answering
 - Freetext knowledge
 - Structured knowledge
- Dialogue Systems
 - Goal oriented
 - Open domain
Part-of-speech tagging

- Hidden Markov Model
- Sequence tagging
- Nouns, Verbs, Adjectives, ...
- Cca 93-95 % accuracy (English)
- Counting transition and emit counts to estimate probabilities
- Publicly available training data for many languages

\[
\text{argmax}_T \ P(T|W) = \text{argmax}_T \ \frac{P(W|T)P(T)}{P(W)} = \text{argmax}_T \ P(W|T)P(T) \\
\text{argmax}_T \prod_{i=1}^{n} p(w_i|t_i)p(t_i|t_{i-1})
\]
Part-of-speech tagging II

- Viterbi algorithm
- Dynamic programming

![Diagram of part-of-speech tagging using Viterbi algorithm and dynamic programming]
Question Answering

Tasks:
● Factoid QA
 ○ Most popular
 ○ A lot of modifications (supporting facts, list answers, yes/no answers, counting, ...)
 ○ IBM Watson 2011
● Visual QA
 ○ Questions about particular items or actions on an image
 ○ Combination on NLP and image processing

Approaches:
● Typically according to a knowledge source
● Information retrieval based
● Knowledge base based
● Hybrid systems - DeepQA, YodaQA
Information retrieval

- **Text based method**
- Takes advantage of huge amount of free text on the Web (Wikipedia, domain specific sources, ...)
- **Extension of classical web search**
 - Query is natural language
 - The result is a single answer which needs to be found in the search results
- **Steps:**
 - Question analysis
 - Answer (passage) production
 - Passage analysis
 - Answer merging and scoring
Question analysis

- **POS tagging** - HMM, neural network sequence tagging - Google SyntaxNex (state-of-the-art)
- **Entity recognition** - sequence tagging HMM, CRF, usually done with linking
 - *Who played meg in family guy*
 - *Entity: meg, family guy*
- **Entity linking** - can be combined recognition and linking - we recognize the entity if it is successfully linked
 - *Knowledge base ID*
- **Heuristic features**:
 - *Focus*
 - Heuristics, based on POS and dependencies
 - *Lexical answer type*
 - Word from the question, describing answer, where -> location
 - *Clues*
 - Support verb, LAT, named entities
Answer production

- **Clues in title**
 - Searching for question clues in article headline
 - First sentence

- **Full-text**
 - Searching for clues in the whole article
 - Each sentence is considered a passage

- **Concept search**
 - Title and clue is an exact match

- **Re-ranking of passages:**
 - Features:
 - Number of named entities in passage
 - Number of question clues in passage
 - Rank of the document
 - N-gram overlap
Answer production II

- Unstructured Text Search
- Documents indexed
- Advantage of popular engines: Lucene (Solr, Elasticsearch)
- Engines based on TF-IDF and BM25
- TF-IDF:
 - Term frequency, inverse document frequency
 \[
 tf_{i,j} = \frac{n_{i,j}}{\sum_k n_{k,j}} \quad \text{idf}_i = \log \frac{|D|}{|\{j : t_i \in d_j\}|}
 \]
- BM25
 - Modification of TF-IDF
 \[
 \text{score}(D, Q) = \sum_{i=1}^{n} \text{IDF}(q_i) \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot (1 - b + b \cdot \frac{|D|}{\text{avgdl}})}
 \]
Knowledge base

- Extraction of semantic representation of a query
- Mapping question representation to DB query language: SQL, SPARQL, lambda expression
- Most knowledge bases uses relations between entities - **Triple stores**
- Freebase, DBpedia, Wikidata
- Triples terminology:
 - Subject, predicate, object
 - Subject, property (relation), object
 - Entity, relation, entity
Knowledge base - structure

- Each entity (subject, object, cvt) is a graph node
- Entity - object or simple string
- CVT - compound value type, many-to-many relation
- Freebase: 44 million topics, 2.4 billion facts
Query structure

- Based on the questions from popular dataset WebQuestions (Berant et al., 2013)
- 3 basic query structures
- Sufficient for most of the questions
- Linked entity - ID of nodes in the database
- We need to find the correct relation
- Only candidates based on entity are considered
Language Modeling - word2vec

- We need to embed a word into a lower dimensional space
- Skip-gram neural network
- Arithmetic operations show some interesting relations
Language Modeling - word2vec II

- Continuous bag-of-words neural network
Neural network

- Similarity between question and labels of relations
- Entity masking
- Intuition: string of entity labels should have similar meaning as the question has
- Convolution filters - catches meaning of adjacent words
- Another approaches:
 - Output is actual relation instead of similarity score
 - LSTM instead of CNN
Evaluation

- Mean reciprocal rank
 \[
 \text{MRR} = \frac{1}{N} \sum_{i=1 \text{ s.t. } rank_i \neq 0}^{N} \frac{1}{rank_i}
 \]

- Accuracy at one
 - Percentage of questions with correct answer with the highest score

- AP Recall
 - Number of questions with correct answer even considered (regardless the rank)
Dialogue Systems

- Historical systems:
 - ELIZA
 - ALICE

- Goal oriented
 - Conversation ends when the goal is reached
 - Shorter conversation is usually better
 - Hotel/Restaurant reservation

- Chit-chat/Open domain:
 - Without specific goal
 - The goal is to entertain an user as long as possible
 - User decides when is the end of the conversation
Joseph Weizenbaum, 1964 - 1966

Scenario: the therapist

Keyword detection

Handcrafted responses

Using parts of the user message as a response

> Hello, I am Eliza.
* Hello

> How are you today.. What would you like to discuss?
* I am depressed.

> Did you come to me because you are depressed?
* Yes

> I see.
* It is because I have problem with my parents.

> Can you elaborate on that?
* Yes, I think it is because of my dad.

> Do you really think so?
* Yes, he can be really moody sometimes.

> I understand.
ALICE

- Artificial Linguistic Internet Computer Entity
- Richard Wallace, 1995
- Inspired by ELIZA
- Custom language: AIML - Artificial intelligence markup language

```xml
<?xml version = "1.0" encoding = "UTF-8"?>
<aiml version = "1.0.1" encoding = "UTF-8">
  <category>
    <pattern>I am *</pattern>
    <template>
      Hello <set name = "username">!
    </template>
  </category>

  <category>
    <pattern>Good Night</pattern>
    <template>
      Hi <get name = "username"/>
      Thanks for the conversation!
    </template>
  </category>
</aiml>
```
Goal oriented dialogues

- Combination of rules and statistical components
 - POMDP for spoken dialog systems (Williams and Young, 2007)
 - End-to-end trainable task-oriented dialogue system (Wen et al., 2016)
 - End-to-End Task-Completion Neural Dialogue Systems (Li et al., 2017)
Dialogue components

- Typical structure of goal oriented dialogue
- Speech recognition hypotheses
- Intent (find_restaurant, find_movie, give_information)
- Slot-value pairs (food_type=asian)
- Knowledge retrieval
- Dialogue management
- Natural language generation
Intent detection and slot filling

- Can be divided into two separate tasks or processed simultaneously
- Intent detection
 - Classification of the input sentence into a intent class
- Slot filling
 - Sentence labeling
 - Classes: Outside, Begin-slot_type, Inside-slot_type
 - HMM, CRF, LSTM networks
- Combined solution:
 - LSTM network, last output is the intent
 - Input: \(w_1, w_2, \ldots, w_n, \text{<eos>} \)
 - Output: \(y_1, y_2, \ldots, y_n, i \)
Dialogue state tracking

- A.k.a. Dialogue management (DM)
- Input: intent and slot-value pairs
- Forming database query
- Deep Q Network, input: current state, output: action
- ϵ-greedy exploration
- Experience replay
- Issues: cold start, slow learning

```python
for e in range(EPISODES):
    state = sim.reset()
    for time in range(500):
        action = agent.act(state)
        next_state, reward, done = sim.step(action)
        agent.remember(state, action, reward, next_state, done)
        state = next_state
        if done:
            break
    if len(agent.memory) > batch_size:
        agent.replay(batch_size)

def replay(self, batch_size):
    minibatch = random.sample(self.memory, batch_size)
    for state, action, reward, next_state, done in minibatch:
        target = reward
        if not done:
            target = reward + self.gamma * np.amax(self.model.predict(next_state)[0])
        target_f = self.model.predict(state)
        target_f[0][action] = target
        self.model.fit(state, target_f, epochs=1, verbose=0)
        if self.epsilon > self.epsilon_min:
            self.epsilon *= self.epsilon_decay
```
Natural language generation

- Simplest method - template based NLG
 - confirm(food=$V) “Do you want a $V restaurant?”
- Pros: simple, error-free, easy to control
- Cons: time-consuming, poor scalability
- Sequence-to-sequence network
- Input is the sequence of triples intent-slot-value
- Output is a natural language sentence
Open domain dialogues

- Cannot be distinguished between successful and unsuccessful dialogue
- Using variants of seq2seq model
 - Inspired by machine translation
- A neural conversation model (Vinyals and Le, 2015)
- Reinforcement learning for dialogue generation (Li et al., 2016)
Sequence to sequence

- Mapping input sentence to response sentence
- Encoder - decoder
- Single input sentence or multiple dialogue turns to preserve the context
- Problems
 - Objective function does not capture the goal of the dialogue (longer responses instead of single words, informative responses instead of generic “I don’t know”)
 - Large and good quality data set of human conversations
Reinforcement learning for dialogue generation

- Modification of the seq2seq approach
- Addresses the issues with non-informative and generic responses
- Supervised training of seq2seq - it is used to compute rewards for reinforcement learning

- Rewards:
 - Ease of answering
 - List of dull responses
 - Negative log prob of dull response given action (based on pre-trained model)
 - Information flow
 - Penalizing semantic similarity between two consecutive answers of the same agent
 - Negative log cosine similarity
 - Semantic coherence
 - Probability of generating response a given the previous dialogue utterances plus
 - Backward probability of generating the previous dialogue utterance based on the response
Handcrafted dialogue structure with trained management

● **Motivation:**
 ○ The responses need to be precisely prepared by the dialogue maker
 ○ More engaging responses
 ○ Avoiding profanity

● **Graph structure of dialogue**

● **Top-level dialogue management (DM):**
 ○ Selects a suitable dialogue graph
 ○ Classification of the sentence

● **Topic-level DM:**
 ○ Navigates in the graph structure
 ○ Classification of the sentence
 ○ Selects a graph node
Thank you!

