Deep Reinforcement Learning
Deep Q-network

Ing. Milan Němý
PhD candidate

FEL ČVUT, 2. 11. 2018
Outline

1 Reinforcement Learning
 - Basic setting of RL
 - Solutions
 - Value function

2 Notable applications
 - TD-Gammon
 - Deep Q-Network
Basic elements of RL

- maximizes rewards over time through its choice of actions

\[S_0, A_0, R_1, S_1, A_1, R_2, ... - \text{Markov Decision Process (MDP)} \]

- probability \(p(s', r|s, a) \) defines dynamics of the MDP

- **policy** \(\pi(a|s) \) – mapping from states to probabilities of selecting each possible action

- **value function** of a state under a policy \(\pi \): \(v_\pi(s) = \mathbb{E}_\pi[G_t|S_t = s] \)

- discounted return
 \[G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... \]

- **action-value function**:
 \[q_\pi(s, a) = E_\pi[G_t|S_t = s, A_t = a] \]
Solution

• **value function** of a state under a policy \(\pi \):
 \[v_\pi(s) = \mathbb{E}_\pi[G_t|S_t = s] \]

• **action-value function**:
 \[q_\pi(s, a) = \mathbb{E}_\pi[G_t|S_t = s, A_t = a] \]

• optimal policy \(\pi^* \):
 \[v^*(s) = \max_\pi v_\pi(s) \text{ and } q^*(s, a) = \max_\pi q_\pi(s, a) \]

• Bellman optimality equation:
 \[v^*(s) = \max_{a \in \mathcal{A}(s)} q^*_{\pi^*}(s, a) = \]
 \[= \max_a \mathbb{E}_{\pi^*}[G_t|S_t = s, A_t = a] = \]
 \[= \max_a \mathbb{E}_{\pi^*}[R_{t+1} + \gamma G_{t+1}|S_t = s, A_t = a] = \]
 \[= \max_a \mathbb{E}_{\pi^*}[R_{t+1} + \gamma v^*(S_{t+1})|S_t = s, A_t = a] = \]
 \[= \max_a \sum_{s', r} p(s', r|s, a)[r + \gamma v^*(s')] \] (1)

 \[q^*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q^*_*(S_{t+1}, a')|S_t = s, A_t = a] = \]
 \[= \sum_{s', r} p(s', r|s, a)[r + \gamma \max_{a'} q^*_*(s', a')] \] (2)
Solution 2

- **Dynamic programming**: Bellman eqs into update rules
 \[
 \nu_{k+1}(s) = \sum_a \pi(a|s) \sum_{s',r} p(s', r|s, a)[r + \gamma \nu_k(s')]
 \]

- **Monte Carlo**: Averaging sample returns
 - on-policy methods
 - off-policy methods

- **Temporal-Difference Learning**:
 \[
 V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]
 \]

- **Sarsa**:
 \[
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]
 \]

- **Q-learning (off-policy)**:
 \[
 Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t)]
 \]
Approximate value function

Value function:

- Tabular form
- Approximate value function:
 - parameterized function with weight factors w, i.e., $\hat{v}(s, w) \approx v_\pi(s)$.
 - stochastic gradient descent
 - linear models $\hat{v}(s, w) = w^T \cdot x(s)$
 - non-linear models
 - artificial neural networks (ANN)
 - deep convolutional networks (CNN)
TD-Gammon

Backgammon:
- 30 pieces and 24 possible locations → enormous number of possible positions
- large number of moves
- dice rolls
- ⇒ game tree effective branching factor ~ 400

TD-Gammon:
- nonlinear form of TD
- estimated value $\hat{v}(s, w)$ – standard multilayer ANN – probabilities of winning from that state
- input units – representation of a backgammon position
TD-Gammon

- **TD-Gammon 0.0**
 - little backgammon knowledge
 - but clever way to present info to ANN
 - 198 input units
 - semi-gradient form of TD:
 \[
 w_{t+1} = w_t + \alpha [R_t + \gamma \hat{v}(S_{t+1}, w_t) - \hat{v}(S_t, w_t)].z_t
 \]
 \[
 z_t = \gamma \lambda z_{t-1} + \nabla \hat{v}(S_t, w_t)
 \]
 - played against itself
 - after 300,000 games – the same performance as *Neurogammon*
 (based on extensive corpus)

- **TD-Gammon 1.0**
 - the same + specialized backgammon features
 - substantially better

- **TD-Gammon 3.1**
 - 160 hidden units
 - close or better than grandmasters
Human-level video game play

- problem of feature selection
- **Breakout game**
- location of the paddle?
- location/direction of the ball?
- presence/absence of each individual brick?
- move universal – *screen pixels*!
Human-level video game play

- problem of feature selection
- Google DeepMind – deep multi-layer ANN can automate the feature design process
- *Mnih et al.* – reinforcement learning agent Deep Q-Network (DQN) = Q-learning + deep convolutional ANN
- 49 different Atari 2600 video games
- different policies for different games BUT the same:
 - raw input
 - network architecture
 - hyperparameters
- Generating next states for each possible action? No
- Q-learning: model-free and off-policy
DQN Skill levels

compared to

- professional human tester – 2 h of practice then average reward over the next 20 games
- random agent
- best from literature (linear function approximation w/ designed features)

training:

- 50M frames ~ 38 days of experience
- better than other RL systems on all but 6 games
- better than human on 22 of the games
- \geq 75% of the human score – 29 out of 46 games
Q-network architecture

- original input: 210x160 px frame - 128 colors at 60 Hz
- preprocessing: 84x84 array of luminance values + 4 images stacked (observability)
- input: 84x84x4 input vector (preprocessing map Φ)
- architecture:
 - 3 hidden convolutional layers
 - 1 FC hidden layer (512)
 - output layer (18 possible actions)
Q-network architecture

architecture:

- 32 filters of 8x8 with stride 4 + ReLU
- 64 filters of 4x4 with stride 2 + ReLU
- 64 filters of 3x3 with stride 1 + ReLU
- FC with 512 units
- output layer (18 possible actions)
- + reward signal (+1/-1/0) for all games

State \rightarrow [Q-network] \rightarrow 18 different Q values
Training

- take action according to ϵ-greedy policy \rightarrow executed \rightarrow reward $+$ next video frame
- optimize MSE between Q-network and Q-learning targets

$$L_t(w_t) = \mathbb{E}_{s,a,r,s'}[(r + \gamma \max_{a'} Q(s', a, \hat{w}_i) - Q(s, a, w_t))^2]$$

- gradient descent:

$$\nabla_{w_t} L(w_t) = \mathbb{E}_{s,a,r,s'}[(r + \gamma \max_{a'} Q(s', a, \hat{w}_i) - Q(s, a, w_t)) \nabla_{w_t} Q(s, a, w_t)]$$

$$w_{t+1} = w_t + \alpha [R_{t+1} + \gamma \max_a \hat{q}(S_{t+1}, a, \hat{w}_t) - \hat{q}(S_t, A_t, w_t)] \nabla \hat{q}(S_t, A_t, w)$$

- gradient by backpropagation
- mini-batch method
- gradient-ascent algorithm RMSProp
- model-free and off-policy
Instability Issues

Naive Deep-RL oscillates and diverge

- Data is sequential - successive samples are correlated (non i.i.d)
- Policy changes rapidly with slight changes to Q-values
- Naive Q-learning gradients can be large and unstable when backpropagated
Instability Issues - Solution

Experience replay *Lin (1992)*

- break correlations in data, bring us back to i.i.d. setting
- learn from all past policies
- Store transition \((s_t, a_t, r_t, s_{t+1})\) in replay memory \(D\)
- Q-learning updates based on experiences sampled uniformly at random from replay memory

\[
L_t(w_t) = \mathbb{E}_{s,a,r,s' \sim D}[(r + \gamma \max_{a'} Q(s', a, w_i) - Q(s, a, w_t))^2]
\]
Instability Issues - Solution

Fixed Target Q-Network

- $\gamma \max_a \hat{q}(S_{t+1}, a, w_t)$ depends on the parameters (w_t) being updated
- \rightarrow oscillations and/or divergence
- compute Q-learning targets w.r.t. old, fixed parameters w_t^-
- optimize MSE between Q-network and Q-learning targets

$$L_t(w_t) = \mathbb{E}_{s,a,r,s' \sim D}[(r + \gamma \max_{a'} Q(s', a, w_i^-) - Q(s, a, w_t))^2]$$

- periodically update fixed parameters
Instability Issues - Solution

Clipping
- clip \(r + \gamma \max_{a'} Q(s', a', w_t^-) - Q(s, a, w_i) \) to remain in the interval \([-1, 1]\).
- further improves stability
- ensures gradients are well-conditioned
How to Train the Q-network

Slide by Bowen Xu (https://www.teach.cs.toronto.edu/~csc2542h/fall/material/csc2542f16_dqn.pdf)
How to Test the Q-network

After Training

Slide by Bowen Xu (https://www.teach.cs.toronto.edu/~csc2542h/fall/material/csc2542f16_dqn.pdf)
Visualization of Value Functions
Replay and Target Q

Extended Data Table 3 | The effects of replay and separating the target Q-network

<table>
<thead>
<tr>
<th>Game</th>
<th>With replay, with target Q</th>
<th>With replay, without target Q</th>
<th>Without replay, with target Q</th>
<th>Without replay, without target Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakout</td>
<td>316.8</td>
<td>240.7</td>
<td>10.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Enduro</td>
<td>1006.3</td>
<td>831.4</td>
<td>141.9</td>
<td>29.1</td>
</tr>
<tr>
<td>River Raid</td>
<td>7446.6</td>
<td>4102.8</td>
<td>2867.7</td>
<td>1453.0</td>
</tr>
<tr>
<td>Seaquest</td>
<td>2894.4</td>
<td>822.6</td>
<td>1003.0</td>
<td>275.8</td>
</tr>
<tr>
<td>Space Invaders</td>
<td>1088.9</td>
<td>826.3</td>
<td>373.2</td>
<td>302.0</td>
</tr>
</tbody>
</table>
Conclusion

- pro: no need for problem-specific design and tuning
- pro: single agent can solve many challenging tasks
- con: not a complete solution, poor on some games