CLUSTERING OF BIOLOGICAL SEQUENCES

Petr Ryšavý
Thursday 20th October, 2016

IDA, Dept. of Computer Science, FEE, CTU
HIERARCHICAL CLUSTERING
Hierarchical clustering

- more informative than flat clustering
- agglomerative (bottom-up) or divisive (top-down)
- result of agglomerative hierarchical clustering usually in form of dendogram
- AHC runs usually in $\mathcal{O}(n^3)$, can be implemented in $\mathcal{O}(n^2 \log n)$
General algorithm

while There are more than one cluster do
 select two clusters and combine them into one cluster
end while

- Algorithm holds matrix of pairwise distances D
- Two closest clusters are merged and D is updated
Lance-Williams formula [3]

Generic formula for updating the dissimilarity matrix D.

```
while There are more than one cluster do
    $(C_i, C_j) = \arg\min_{C_l, C_m} D(C_k, C_l)$
    $C_{(ij)} = C_i \cup C_j$
    for each Cluster $C_k$ (where $k \neq i, k \neq j$) do
        $D(C_{(ij)}, C_k) = \alpha_i D(C_i, C_k) + \alpha_j D(C_j, C_k) + \beta D(C_i, C_j) + \gamma|D(C_i, C_k) - D(C_j, C_k)|.$
    end for
    remove clusters $C_i, C_j$ and insert $C_{(ij)}$
end while
```

- Algorithms vary only in choice of $\alpha_i, \alpha_j, \beta, \gamma$
• unweighted pair group method using arithmetic averages
• Cluster distance is arithmetic average of all between-cluster values

\[D(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{x \in C_i, y \in C_j} d(c_i, c_j) \]

• \(\alpha_i = \frac{|C_i|}{|C_i| + |C_j|} \), \(\alpha_j = \frac{|C_j|}{|C_i| + |C_j|} \), \(\beta = \gamma = 0 \)

• \(D(C_{ij}, C_k) = \frac{|C_i|D(C_i, C_k) + |C_j|D(C_j, C_k)}{|C_i| + |C_j|} \)
- weighted pair group method using arithmetic averages
- smaller clusters receive larger weight, does not prefer same-size clusters
- $\alpha_i = \alpha_j = \frac{1}{2}, \beta = \gamma = 0$
- $D(C_{(i,j)}, C_k) = \frac{1}{2}(D(C_i, C_k) + D(C_j, C_k))$
Molecular clock assumption [9]

- rate of evolutionary changes of DNA is approximately constant over time and branches of evolutionary tree
- evolutionary tree is ultrametric - distance from root to the leaves is constant
- let’s measure edit distance between sequences
- for all triplets: pairwise distances are all same or two are same and one is less

Figure 10.7: An evolutionary tree showing the divergence of raccoons and bears. Despite their difference in size and shape, these families are closely related.
Neighbor-joining [6]

- Reconstructs tree from additive matrix
- Matrix is additive if four point condition holds
- Does not make molecular clock assumption
- Merges clusters that are close to each other and far away from others
- Let $u(C) = \frac{1}{\text{num.ofclusters}-1} \sum D(C, C')$
- Pick clusters minimizing $D(C_i, C_j) - u(C_1) - u(C_2)$
- New distance based on 3-leave formula ($\alpha_i = \alpha_j = \frac{1}{2}, \beta = -\frac{1}{2}, \gamma = 0$)

$$D(C_{(ij)}, C_k) = \frac{1}{2} (D(C_i, C_k) + D(C_j, C_k) - D(C_i, C_j))$$
CHARACTER BASED TREE RECONSTRUCTION
Motivation

- alignment lost in distance matrix
- let's reconstruct tree directly from sequence alignment
- input: $n \times m$ matrix, n organisms m characters each
- parsimony approach: minimize number of mutations over evolutionary tree
Tree cost

- length of edge (u, v) is Hamming distance
- parsimony score for whole tree is sum of costs of all edges
- strings in internal vertices unknown
- find labeling of internal vertices that minimizes parsimony score
Small parsimony problem

- Find the most parsimonious labeling of the internal vertices in an evolutionary tree.
Fitch algorithm [1]

- dynamic programming algorithm

- assigns to each vertex a set of letters S_u so that
 - For any leaf u: S_u is label of the leaf.
 - for u with children v, w

$$S_u = \begin{cases}
S_v \cap S_w, & \text{if } S_v \cap S_w \neq \emptyset, \\
S_v \cup S_w, & \text{otherwise.}
\end{cases}$$

- in next pass label vertices
 - Assign root r any value from S_r.
 - for u with parent p

$$\text{label}_u = \begin{cases}
\text{label}_p, & \text{label}_p \in S_u, \\
\text{any element of } S_u, & \text{otherwise.}
\end{cases}$$
Weighted small parsimony problem

- Find the minimal weighted parsimony score labeling of the internal vertices in an evolutionary tree.
- different character substitutions have different costs
Sankoff’s algorithm [7]

- dynamic programming algorithm
- let $s_t(u)$ be parsimony score of tree with root u labeled by t
- for u with children v, w holds
 \[s_t(u) = \min_i \{ s_i(v) + \delta_{i,t} \} + \min_j \{ s_j(w) + \delta_{j,t} \}. \]
- runs in $\mathcal{O}(|\Sigma|n)$
Large parsimony problem

- Find a tree with n leaves having the minimal parsimony score.
- NP-complete
- exhaustive search of tree topologies with heuristics and branch and bound
Thank you for your attention. Time for questions!
Walter M. Fitch.
Toward defining the course of evolution: Minimum change for a specific tree topology.

Neil C Jones and Pavel Pevzner.
An introduction to bioinformatics algorithms.

G. N. Lance and W. T. Williams.
A general theory of classificatory sorting strategies: Ii. clustering systems.
Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman.
Mining of massive datasets.

Hannes Luz Martin Vingron, Jens Stoye.
Algorithms for phylogenetic reconstructions.

Naruya Saitou and Masatoshi Nei.
The neighbor-joining method: a new method for reconstructing phylogenetic trees.
David Sankoff.
Minimal mutation trees of sequences.

A statistical method for evaluating systematic relationships.

Emile Zuckerkandl and Linus Pauling.
Molecular disease, evolution and genetic heterogeneity.
1962.

All images are taken from [2].