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A Major Assumption in 
Traditional Machine Learning

Training and test (future) data come from the same task 
and the same domain:  

• Represented in the same feature and label spaces.  

• Follow the same distribution. 
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In Real-world Application

Training and test (future) data may come from different 
domains and different tasks, which have:  

• different marginal distributions or different feature 
spaces,  

• different predictive distributions or different label spaces.
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Data Representation
Diff. feature spaces
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Traditional Machine Learning 
versus Transfer Learning

6



Motivation
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Motivation (cont.)
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Motivation (cont.)
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• real dataset - cancer detection



Transfer Learning
Transfer learning definition: 

The ability of a system to recognize and apply 
knowledge and skills learned in previous tasks/domains 

to novel tasks or new domains, which share some 
commonalities.
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Definitions
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Transfer Learning (cont.)
Transfer learning can be very useful in these areas: 

• text classification (text clustering), 

• reinforcement learning, 

• sentiment classification, 

• collaborative filtering, 

• sensor-based location estimation, 

• AI planning, 

• metric learning.
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Transfer Learning (cont.)
Transfer learning offers benefits: 

• automatization of mapping process, 

• increasing usability of poor data, 

• saving time, 

• saving human resources, 

• no presence of domain expert 
necessary.
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Fields of Transfer Learning

1) Transfer Learning for reinforcement learning: 

- Taylor, M. E. and Stone, P. (2009) - Transfer Learning for 
Reinforcement Learning Domains: A Survey. 

2) Transfer learning for classification and regression problems: 

- Pan, S. J. and Yang, Q. (2009) - A survey on transfer learning.  

- Weiss, K., Khoshgoftaar, T. M., and Wang, D. D. (2016) - A 
survey of transfer learning.
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Research Issues
Three main research issues: 

• What to transfer? 

• Asks which part of knowledge can be transferred. 

• How to transfer? 

• Defines the algorithm that extracts the knowledge. 

• When to transfer? 

• Defines in which situations knowledge should not be 
transferred (negative transfer learning).
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TL Hierarchy
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What to Transfer

There exists four standard approaches: 

• instance-based transfer learning, 

• feature-based transfer learning, 

• parameter-based transfer learning, 

• relational-based transfer learning.
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Instance-based TL
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The main assumption: 

• Source and target domains have a lot of overlapping 
features.



Feature-based TL

19

The main assumption: 

• Source and target 
domains only have some 
overlapping features.



How to Transfer

Symmetric Approach 

• Source domain Ds 

• Target domain DT 

• Specific transformation M for each domain 
(Ms and MT) 

• Latent space Dc 
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Asymmetric Approach 

• Source domain Ds 

• Target domain DT 

• Common transformation M 



Symmetric Approach
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Asymmetric Approach no. 1
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Asymmetric Approach no. 2
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When to Transfer
Negative Transfer Learning: 

• Transfer learning methods assume that the source and 
target domains are related to each other in some way. If this 
assumption does not hold, negative transfer may happen. 

• We need to first study transferability between source 
domains or tasks and target domains or tasks and then 
select relevant source domains or tasks to extract 
knowledge. 

• Fertile area for further research. 
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Another Settings
1. Inductive TL 

• the target task is different from the source task 

• labeled data in the target domain are required 

2. Transductive TL 

• the target domain is different from the source domains 

• no labeled data in the target domain 

3. Unsupervised TL 

• focused on unsupervised learning tasks in the target domain 

• no labeled data in both source and target domains 
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TL Challenges
• Negative transfer learning. 

• How to avoid negative transfer? 

• Robust negative transfer measurements. 

• Another area of future work pertains to the scenario where the output label space is different 
between domains.  

• Very few transfer learning solutions addressing the scenario of unlabeled source and 
unlabeled target data. 

•  Improved methods for correcting the conditional distribution differences. 

• A lack of general solutions (mainly domain specific solutions) (mainly in heterogeneous field). 

• How the diversity and large size of sensor data integrates into transfer learning solutions. 

• Active learning.  

• Cold-start problem.
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My Research Area
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Asymmetric Heterogeneous Transfer Learning 

(e.g. same task, different domains, asymmetric approach) 

We face to these problems: 

• different feature representations, 

• different numbers of features, 

• different meanings of features, 

• a few or no overlapping features.



Definition of HetTL
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Problems with Data 
Representation
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[Xu, Saenko and Tsang, Domain Transfer Tutorial (2012)]



Problems with Feature 
Representation

Heterogeneous TL
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Fields of Application

• Computer vision - image classification, 

• cross-language classification, 

• cross-project defect prediction, 

• activity recognition.
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[Kulis, B., Saenko, K., and Darrell, T. (2011)]



Activity Recognition Task
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[Dahmen et al. (2017)]
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Activity Recognition Task (cont.)
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Feature-Space Remapping method (Feuz and Cook, 2015): 

• Requires a one time manual specification of meta-features. 

• Computes the average similarity between the source and target 
meta-features. 

• The similarity is the absolute value of the difference divided by 
the maximum possible difference.
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Cross-Project Defect 
Prediction

Model TestingTraining

Target DatasetSource Dataset
Heterogeneous Defect Prediction 
by Nam and Kim (2015): 

HDP phases: 

1. Metric Selection 

2. Metric Matching 

3. Prediction



• Used methods for measuring the source and target data 
similarity: 

• percentiles, 

• Kolmogorov-Smirnov Test, 

• Spearman’s correlation.
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Feature Mapping
State-of-art of feature mapping: 

• preprocessing, 

• dimensionality reduction, 

• feature selection. 

Mappings used within transfer learning: 

• statistic methods, 

• metric methods.
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Actual Work
• Can we use a dataset with a few missing features for 

classification while preserving model accuracy? If we 
use such a dataset, how will the model perform? 

• Is it possible to define a subset of features which are 
crucial for model accuracy? Can this subset be 
replaced by a subset of other features? 

• Does a method which would determine whether a 
damaged dataset is usable for model classification 
without loss of model accuracy exist?
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Actual Work (cont.)
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• Definition of feature importance and its influence on 
model performance →Missing Feature Combination 
method (MFC). 

• Count of feature combinations



Actual Work (cont.)
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• MFC method output:



Thank you!
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