UMAP in context of other dim. reduction methods

Anh Vu Le

Outline

- 1. Introduction
- 2. PCA
- 3. Methods related to UMAP
 - a. ISOMAP
 - b. t-SNE
- 4. Taxonomy of dimensionality reduction methods
- 5. UMAP

What is dimensionality reduction about?

"...transformation of high-dimensional data into a meaningful representation of reduced dimensionality"

- intrinsic dimensions of data (~ manifold)
 - smaller dimension, own geometry
- mitigates the curse of dimensionality

• classification, visualization, and compression

PCA - the queen of dimensionality reduction

"PCA transforms (possibly correlated) data **linearly into new properties** that are **not correlated**"

Properties of transformation:

- Preserves variance
 - Axis are directions of greatest variance
- properties are uncorrelated

The elegance of PCA

"PCA transforms possibly correlated data linearly into new properties that are not correlated"

 $cov(\mathbf{X}) = \mathbf{C}_{\mathbf{X}} = \mathbf{X}^T \mathbf{X}$ is a covariance matrix

We want to find the projection ${\bf P}$ to uncorralated space, s.t.: ${\bf XP}={\bf T}$

where the uncorrelateness is expressed in the fact, that $\mathbf{C}_{\mathbf{T}}$ is diagonal

The elegance of PCA

PCA transforms possibly correlated data linearly into new properties that are not correlated with each other

 $cov(\mathbf{X}) = \mathbf{C}_{\mathbf{X}} = \mathbf{X}^T \mathbf{X}$ is a covariance matrix

We want to find the projection \mathbf{P} to uncorrelated space, s.t.: $\mathbf{XP} = \mathbf{T}$ where the uncorrelateness is expressed in the fact, that $\mathbf{C_T}$ is **diagonal**

The covariance matrix of \mathbf{T} can be expressed as: $\mathbf{C}_{\mathbf{T}} = \mathbf{T}^T \mathbf{T} = (\mathbf{X}\mathbf{P})^T \mathbf{X}\mathbf{P} = \mathbf{P}^T (\mathbf{X}^T \mathbf{X})\mathbf{P} = \mathbf{P}^T \mathbf{C}_{\mathbf{X}}\mathbf{P}$

We know, that C_X is a symmetric matrix. The fine property of symmetrix matrices, that their eigenvectors are orthogonal and: $C_X = EDE^T$ where D is diagonal matrix

Now the magic: what if \mathbf{P} is said to be \mathbf{E} ?

The elegance of PCA

 $\mathbf{C}_{\mathbf{T}} = \mathbf{P}^T \mathbf{C}_{\mathbf{X}} \mathbf{P}$ $\mathbf{C}_{\mathbf{X}} = \mathbf{E} \mathbf{D} \mathbf{E}^T$

If **P** is said to be **E**, then $\mathbf{C}_{\mathbf{T}} = \mathbf{P}^T \mathbf{C}_{\mathbf{X}} \mathbf{P} = \mathbf{P}^T (\mathbf{E} \mathbf{D} \mathbf{E}^T) \mathbf{P} = \mathbf{P}^T (\mathbf{P} \mathbf{D} \mathbf{P}^T) \mathbf{P} = \mathbf{D}$

Choosing the **projection matrix** to be **eigenvectors** of the **covariance matrix of** *X* gives us the projection we want:

- uncorrelated properties (diagonal C_T)
- no loss of information (P is orthogonal)

Kernel PCA

• Some data linearly inseparable

 $cov(\mathbf{X}) \to K(\mathbf{X})$ $k_{i,j} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$

Transformation matrix is again the eigenmatrix of K

- Vapnik–Chervonenkis theory projection into a higher dimensional space may provide us with better classification power.
- Kernel trick, a method to project original data into higher dimension without sacrificing too much computational time

Focusing on local patches of manifold

ISOMAP

• Close points in original space don't need to be close on manifold

Steps:

- 1. Construct a **neighbourhood** graph (B)
- 2. Compute **shortest paths** between points in the graph (B)
- 3. Embed points with knowledge shortest paths in **lower dimension**

Focusing on local patches of manifold (t-SNE)

Key koncept: t-SNE maps distances to probabilities

Each point in original space forms a <u>Gaussian</u> around itself

On lower dimension, place points randomly at first

Each point in lower dim. forms a *t-distribution* around itself

Minimize entropy:

$$C = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

 p_{ij} ...probability distance in original space q_{ij} ...probability distance in reduced space

t-SNE in practice

Taxonomy of techniques

- **MDS** (Multidimensional scaling)
 - "Fabricating" coordinate system based on similarity/distances
 - 3rd step of ISOMAP
- **MVU** (Maximum Variance Unfolding)
 - Learning kernel function for kernel PCA
- Autoencoder

Taxonomy of techniques

UMAP

	t-SNE	UMAP
COIL20	20 seconds	7 seconds
MNIST	22 minutes	98 seconds
Fashion MNIST	15 minutes	78 seconds
GoogleNews	4.5 hours	14 minutes

Algorithm 2 Constructing a local fuzzy simplicial set

 $\begin{array}{l} \textbf{function LocalFuzzySIMPLICIALSET}(X, x, n) \\ & \texttt{knn, knn-dists} \leftarrow \texttt{ApproxNearestNeighbors}(X, x, n) \\ & \rho \leftarrow \texttt{knn-dists}[1] \\ & \triangleright \texttt{Distance to nearest neighbor} \\ & \sigma \leftarrow \texttt{SMOOTHKNNDIst}(\texttt{knn-dists, } n, \rho) \\ & \triangleright \texttt{Smooth approximator to knn-distance} \\ & \texttt{fs-set}_0 \leftarrow X \\ & \texttt{fs-set}_1 \leftarrow \{([x, y], 0) \mid y \in X\} \\ & \textbf{for all } y \in \texttt{knn do} \\ & d_{x,y} \leftarrow \max\{0, \texttt{dist}(x, y) - \rho\}/\sigma \\ & \texttt{fs-set}_1 \leftarrow \texttt{fs-set}_1 \cup ([x, y], \texttt{exp}(-d_{x,y})) \\ & \textbf{return fs-set} \end{array}$

Algorithm 3 Compute the normalizing factor for distances σ

function SmoothKNNDIst(knn-dists, n, ρ) Binary search for σ such that $\sum_{i=1}^{n} \exp(-(\text{knn-dists}_i - \rho)/\sigma) = \log_2(n)$ return σ

"...converting the [set of] metric spaces into fuzzy simplicial sets"

 $\mu(x)$ for $x \in A$ to be the **membership strength** of x to the set A.

UMAP - cost function

Optimizes fuzzy set cross entropy:

$$C_{UMAP} = \sum_{i \neq j} \left(v_{ij} \log \left(\frac{v_{ij}}{w_{ij}} \right) \right) + \left((1 - v_{ij}) \log \left(\frac{1 - v_{ij}}{1 - w_{ij}} \right) \right)$$

 v_{ij} ...membership strenght of j to fuzzy set of i in orig. space w_{ij} ...membership strenght of j to fuzzy set of i in red. space

$$C = \sum_{i \neq j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

 p_{ij} ...probability distance in original space q_{ij} ...probability distance in reduced space

Algorithm 5 Optimizing the embeddingfunction OptimizeEmbedding(top-rep, Y, min-dist, n-epochs) $\alpha \leftarrow 1.0$ Fit Φ from Ψ defined by min-distfor $e \leftarrow 1, \ldots,$ n-epochs dofor all $([a, b], p) \in$ top-rep1 doif RANDOM() $\leq p$ then $y_a \leftarrow y_a + \alpha \cdot \nabla(\log(\Phi))(y_a, y_b)$ for $i \leftarrow 1, \ldots,$ n-neg-samples do $c \leftarrow$ random sample from Y $y_a \leftarrow y_a + \alpha \cdot \nabla(\log(1 - \Phi))(y_a, y_c)$ $\alpha \leftarrow 1.0 - e/n$ -epochsreturn Y

Sources

McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold approximation and projection for dimension reduction." *arXiv preprint arXiv:1802.03426* (2018).

He, Jinrong, et al. "Intrinsic dimensionality estimation based on manifold assumption." *Journal of Visual Communication and Image Representation* 25.5 (2014): 740-747.

van der Maaten, Laurens & Postma, Eric & Herik, H. (2007). Dimensionality Reduction: A Comparative Review. Journal of Machine Learning Research - JMLR. 10.

https://blog.datawow.io/the-curse-of-dimensionality-c99409eb58e9

https://towardsdatascience.com/kernel-pca-vs-pca-vs-ica-in-tensorflow-sklearn-60e17eb15a64

https://towardsdatascience.com/understanding-pca-autoencoders-algorithms-everyone-can-understand-28ee89b570e2

https://medium.com/bluekiri/understanding-principal-component-analysis-once-and-for-all-9f75e7b33635

http://blog.thegrandlocus.com/img/Gauss_vs_Cauchy.png