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What is dimensionality reduction about?
“ ...transformation of high-dimensional data into a meaningful representation of reduced 
dimensionality”

● intrinsic dimensions of data (~ manifold)
○ smaller dimension, own geometry

● mitigates the curse of dimensionality

● classification, visualization, and compression
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PCA - the queen of dimensionality reduction
“PCA transforms (possibly correlated) data linearly into new properties that are not correlated”

Properties of transformation:

● Preserves variance
○ Axis are directions of greatest variance

● properties are uncorrelated



The elegance of PCA
“PCA transforms possibly correlated data linearly into new properties that are not correlated”



The elegance of PCA
PCA transforms possibly correlated data linearly into new properties that are not correlated with each other



The elegance of PCA

Choosing the projection matrix to be 
eigenvectors of the covariance matrix of X 
gives us the projection we want:

● uncorrelated properties (diagonal CT)
● no loss of information (P is orthogonal)



Kernel PCA
● Some data linearly inseparable

● Vapnik–Chervonenkis theory - projection into a higher dimensional space may provide
us with better classification power. 

● Kernel trick, a method to project original data into higher dimension without 
sacrificing too much computational time



Focusing on local patches of manifold 
ISOMAP

● Close points in original space don’t need to be close on manifold

Steps:
1. Construct a neighbourhood graph (B)
2. Compute shortest paths between points in the graph (B)
3. Embed points with knowledge shortest paths in lower dimension



Focusing on local patches of manifold (t-SNE) 
Key koncept:    t-SNE maps distances to probabilities

Each point in original space forms a Gaussian around itself

On lower dimension, place points randomly at first

Each point in lower dim. forms a t-distribution around itself

Minimize entropy:

n iterations



t-SNE in practice



Taxonomy of techniques

● MDS (Multidimensional scaling)
○ “Fabricating” coordinate system based 

on similarity/distances
○ 3rd step of ISOMAP

● MVU (Maximum Variance Unfolding)
○ Learning kernel function for kernel PCA

● Autoencoder 



Taxonomy of techniques



UMAP
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“...converting the [set of] metric spaces into fuzzy simplicial sets”

Fuzzy set:
● Carrier set A
● Membership function µ : A → [0, 1]

Example: 
µ(x) for x ∈ A to be the membership strength of x to the set A.  



UMAP - cost function
Optimizes fuzzy set cross entropy:
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