Text Classification

What is on today's schedule?

What is the problem?

Set of Documents

Set of classes

$$D = \{d_1, d_2, d_3, \dots, d_n\} \qquad C = \{c_1, c_2, c_3, \dots, c_m\}$$

Classifier

 $c_j = f(d_i)$

How to represent text?

String + Machine Learning = 🙁

Vector + Machine Learning = 💗

Bag of Words

Bag of Words

+ Simple to create

- Sparse
- Huge Dimension
- No order of words
- No meaning of words

Word vectors	dog	-0.4	0.37	0.02	-0.34
	cat	-0.15	-0.02	-0.23	-0.23
	lion	0.19	-0.4	0.35	-0.48
	tiger	-0.08	0.31	0.56	0.07
	elephant	-0.04	-0.09	0.11	-0.06
	cheetah	0.27	-0.28	-0.2	-0.43
	monkey	-0.02	-0.67	-0.21	-0.48
	rabbit	-0.04	-0.3	-0.18	-0.47
	mouse	0.09	-0.46	-0.35	-0.24
	rat	0.21	-0.48	-0.56	-0.37

Dimensions

CBOW

Skip-gram

word2vec model architecture

Word2Vec

GloVe

Sent2Vec

- + Low Dimension
- + Dense representation
- + Similar words has similar meaning

- Some words has multiple meanings

How to classify?

Average

Decay of information through time

Sport is my favorite topic

Sport is my favorite topic ----- Sport

Is there any solution?

Attention

We know basic now!

What is the problem?

What is the problem? \checkmark

How to represent text?

How to represent text? V

How to represent text? V

How to classify by LSTM?

How to represent text? V

How to classify by LSTM? \checkmark

How to represent text? V

How to classify by LSTM? \checkmark

What is attention?

How to represent text? V

How to classify by LSTM? \checkmark

What is attention? 🗸

Let's got to

What is it?

Encoder - Decoder model with

multi-headed self attention and

residual connections using

Why is it important?

"NLP's ImageNet moment has arrived"

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP MNLI-m MNLI-mm		QNLI	RTE	WNLI	AX	
	1	T5 Team - Google	Т5		89.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0	91.7	96.7	92.5	93.2	9.2
	2	ALBERT-Team Google Langua	geALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	<mark>91.8</mark>	50.2
+	3	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)		89.0	69.2	97.1	93.6/91.5	92.7/92.3	74.4/90.7	90.7	90.2	99.2	87.3	89.7	47.8
	4	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	<mark>89.</mark> 0	<mark>50</mark> .1
	5	Facebook AI	RoBERTa		88.5	<mark>67.</mark> 8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0	48.7
	6	XLNet Team	XLNet-Large (ensemble)		88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2	89.8	98.6	86.3	90.4	47.5
+	7	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		87.6	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	8	GLUE Human Baselines	GLUE Human Baselines		87.1	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91.2	93.6	95.9	
	9	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	65.1	39.9
	10	XLM Systems	XLM (English only)		83.1	62.9	95.6	90.7/87.1	88.8/88.2	73.2/89.8	89.1	88.5	94.0	76.0	71.9	44.7
	11	Zhuosheng Zhang	SemBERT		82.9	62.3	94. <mark>6</mark>	91.2/88.3	87.8/86.7	72.8/89.8	87.6	86.3	94.6	84.5	65.1	42.4
	12	Danqi Chen	SpanBERT (single-task training)		82.8	64.3	94.8	90.9/87.9	89.9/89.1	71.9/89.5	88.1	87.7	94.3	79.0	65.1	45.1
	13	Kevin Clark	BERT + BAM		82.3	<mark>61.</mark> 5	95.2	91.3/88.3	88.6/87.9	72.5/89.7	86.6	85.8	93.1	80.4	65.1	40.7
	14	Nitish Shirish Keskar	Span-Extractive BERT on STILTs		82.3	63.2	94.5	90.6/87.6	89.4/89.2	72.2/89.4	86.5	85.8	92.5	79.8	65.1	28.3
	15	Jason Phang	BERT on STILTS		82.0	62.1	94.3	90.2/86.6	88.7/88.3	71.9/89.4	86.4	85.6	92.7	80.1	65.1	28.3
	16	廖亿	RGLM-Base (Huawei Noah's Ark Lab)		81.3	56.9	94.2	90.7/87.7	89.7/89.1	72.2/89.4	86.1	85.4	92.1	78.5	65.1	40.0

	Rank	Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	qqp M	QQP MNLI-m MNLI-mm		QNLI	RTE	WNLI	AX
	1	T5 Team - Google	Т5		<mark>8</mark> 9.7	70.8	97.1	91.9/89.2	92.5/92.1	74.6/90.4	92.0	91.7	96.7	92.5	93.2	9.2
	2	ALBERT-Team Google Languag	geALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	91.0	99.2	89.2	91.8	50.2
+	3	王玮	ALICE v2 large ensemble (Alibaba DAMO NLP)		89.0	69.2	97.1	93.6/91.5	92.7/92.3	74.4/90.7	90.7	90.2	99.2	87.3	89.7	47.8
	4	Microsoft D365 AI & UMD	FreeLB-RoBERTa (ensemble)		88.8	68.0	96.8	93.1/90.8	92.4/92.2	74.8/90.3	91.1	90.7	98.8	88.7	89.0	<mark>50</mark> .1
	5	Facebook Al	RoBERTa		88.5	67.8	96.7	92.3/89.8	92.2/91.9	74.3/90.2	90.8	90.2	98.9	88.2	89.0	48.7
	6	XLNet Team	XLNet-Large (ensemble)		88.4	67.8	96.8	93.0/90.7	91.6/91.1	74.2/90.3	90.2	89.8	98.6	86.3	90.4	47.5
+	7	Microsoft D365 AI & MSR AI	MT-DNN-ensemble		<mark>87.6</mark>	68.4	96.5	92.7/90.3	91.1/90.7	73.7/89.9	87.9	87.4	96.0	86.3	89.0	42.8
	8	GLUE Human Baselines	GLUE Human Baselines		<mark>87.1</mark>	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0	92.8	91. <mark>2</mark>	93.6	95.9	-
	9	Stanford Hazy Research	Snorkel MeTaL		83.2	63.8	96.2	91.5/88.5	90.1/89.7	73.1/89.9	87.6	87.2	93.9	80.9	<mark>65.1</mark>	39.9
	10	XLM Systems	XLM (English only)		<mark>83.1</mark>	62.9	95. <mark>6</mark>	90.7/87.1	88.8/88.2	73.2/89.8	89.1	88.5	94.0	76.0	71.9	44.7
	11	Zhuosheng Zhang	SemBERT		82.9	62.3	94. <mark>6</mark>	91.2/88.3	87.8/86.7	72.8/89.8	87.6	86.3	94.6	84.5	<mark>65.1</mark>	42.4
	12	Danqi Chen	SpanBERT (single-task training)		82.8	64.3	94.8	90.9/87.9	89.9/89.1	71.9/89.5	88.1	87.7	94.3	79.0	65.1	45.1
	13	Kevin Clark	BERT + BAM		82.3	<mark>61.5</mark>	95.2	91.3/88.3	88.6/87.9	72.5/89.7	86.6	85.8	93.1	80.4	65.1	40.7
	14	Nitish Shirish Keskar	Span-Extractive BERT on STILTs		82.3	63.2	94.5	90.6/87.6	89.4/89.2	72.2/89.4	86.5	85.8	92.5	79.8	65.1	28.3
	15	Jason Phang	BERT on STILTs		82.0	62.1	94.3	90.2/86.6	88.7/88.3	71.9/89.4	86.4	85.6	92.7	80.1	65.1	28.3
	16	廖亿	RGLM-Base (Huawei Noah's Ark Lab)		81.3	56.9	94.2	90.7/87.7	89.7/89.1	72.2/89.4	86.1	85.4	92.1	78.5	65.1	<mark>40.0</mark>

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

Thinking Machines Input Embedding X₁ X₂ **q**₂ Queries q1 Keys k1 k₂ Values V2 V1 $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ Score

Thinking Input **Machines** Embedding X₂ X1 Queries q1 q2 Keys k1 k₂ Values V₁ V₂ $q_1 \cdot k_1 = 112$ $q_1 \cdot k_2 = 96$ Score Divide by 8 ($\sqrt{d_k}$) 14 12 0.88 0.12 Softmax

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

1) Concatenate all the attention heads

Z	Z ₀			Z 1			Z 2			Z 3			Z 4			Z 5			Z 6			Z 7		

2) Multiply with a weight matrix W⁰ that was trained jointly with the model

Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

positional encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

positional encoding

Stacked Encoder - Decoder model

with multi-headed self attention

and residual connections using

positional encoding

and layer normalization

References

The Illustrated Transformer, Jay Alammar, http://jalammar.github.io/illustrated-transformer/

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems. 2017.

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013).

Bojanowski, Piotr, et al. "Enriching word vectors with subword information." Transactions of the Association for Computational Linguistics 5 (2017): 135-146.

Pennington, Jeffrey, Richard Socher, and Christopher Manning. "Glove: Global vectors for word representation." Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 2014.

Gupta, Prakhar, Matteo Pagliardini, and Martin Jaggi. "Better Word Embeddings by Disentangling Contextual n-Gram Information." arXiv preprint arXiv:1904.05033 (2019).

Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Luong, Minh-Thang, Hieu Pham, and Christopher D. Manning. "Effective approaches to attention-based neural machine translation." arXiv preprint arXiv:1508.04025 (2015).

Wang, Alex, et al. "Glue: A multi-task benchmark and analysis platform for natural language understanding." arXiv preprint arXiv:1804.07461 (2018).

NLP's ImageNet moment has arrived, Sebastian Ruder, https://thegradient.pub/nlp-imagenet/

Text Classification