XGBoost and Competitors: Tree-Based Methods for Tabular Data

•••

28.11.2025

Adéla Kubíková

What is tabular data?

- most common type
- transactional data
- heterogeneous
- no local structure
- quality of datasets
- deep learning?

Customer ID	Age	Gender	Income (\$)	Purchased
101	25	Male	40000	No
102	32	Female	55000	Yes
103	45	Male	72000	No
104	28	Female	60000	Yes
105	29	Male	50000	Yes

Contents

Motivation - why tabular data?

Decision trees

Ensemble methods - Bagging and Boosting

XGBoost, LightGBM and CatBoost

Deep neural models

Performance comparison

Summary

Evolution of Tree Algorithm

Decision Trees

Bagging

Random Forest

Boosting

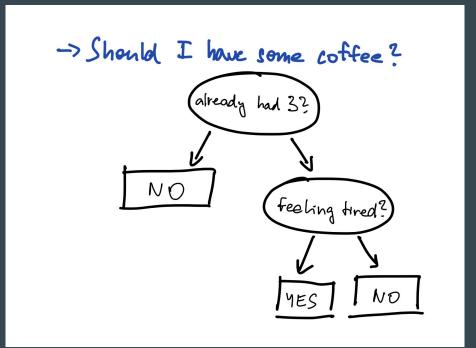
Gradient Boosting

XG-Boost

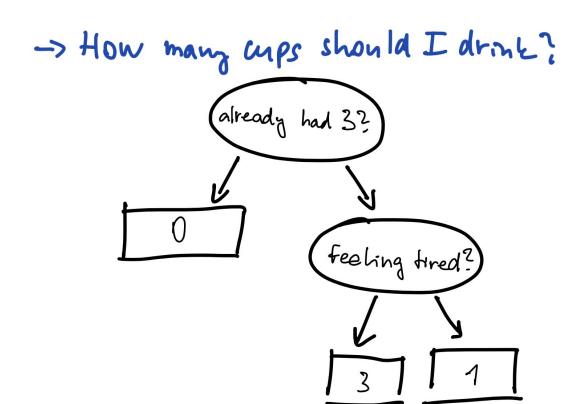
Base learner: Decision trees

What is a decision tree?

- simple model
- set of rules leading to a decision
- feature <= threshold</pre>
- classification trees
- regression trees



-> Should I have some coffee? (already had 32) feeling fired?)

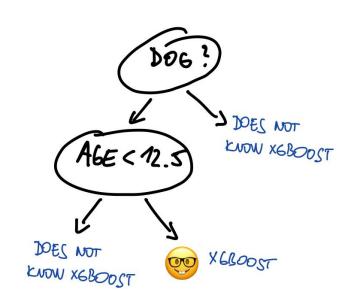


How to build a decision tree?

- classification: minimizing Gini Impurity (Entropy, Information Gain)

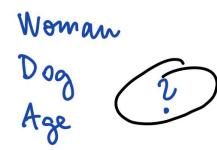
- regression: minimizing prediction error (MSE, MAE)

Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	YES
4ES	YES	38	YES
MES	No	50	NO
GN	No	83	NO



Is a woman	Has a dog	Age	Knows XGBoost
MES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

Is a woman	Has a dog	Age	Knows XGBoost
hES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
NO	HES	35	YES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO



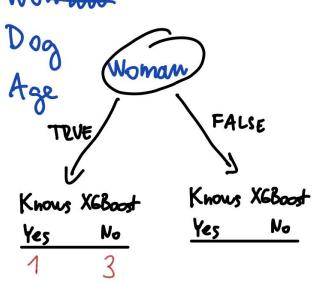
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
CND	No	83	NO

Woman FALSE TEVE Knows X6Boost Knows X6Boost Yes No Yes No

7	

Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
No	YES	18	YES
No	HES	35	MES
hes	Yes	38	YES
MES	No	50	NO
GN	No	83	NO

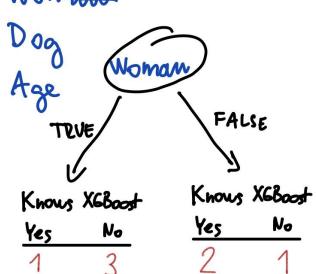
Woman



F		

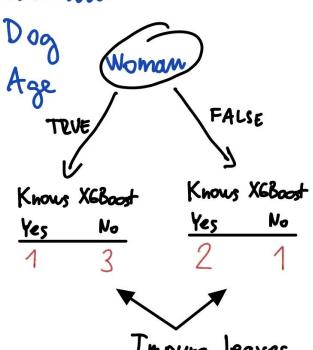
Is a woman	Has a dog	Age	Knows XGBoost	
MES	YES	7	No	
455	NO	12	NO	
NO	YES	18	YES	
No	HES	35	MES	
hes	Yes	38	YES	
MES	No	50	NO	
GN	No	83	NO	

Woman



3
B

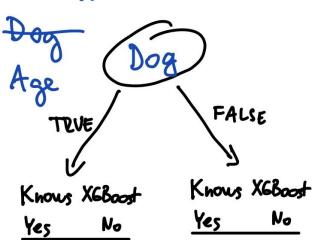
Is a woman	Has a dog	Age	Knows XGBoost
MES	YES	7	No
455	NO	12	NO
No	YES	18	YES
aN	HES	35	MES
hes	Yes	38	YES
MES	No	50	NO
GN	No	83	NO



Impure leaves

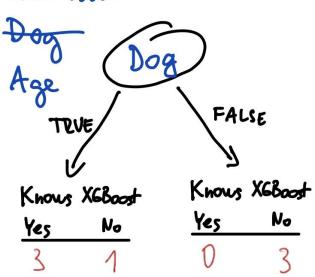
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
১ Ες	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GU	No	83	NO

Woman



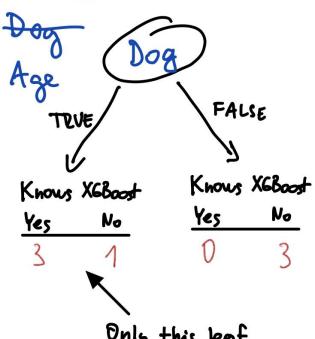
400		480
Has a dog	Age	Knows XGBoost
YES	7	No
NO	12	NO
YES	18	YES
HES	35	MES
Yes	38	YES
No	50	NO
No	83	NO
	A dog YES NO YES HES NO	A dog nge YES 7 NO 12 YES 18 HES 35 YES 38 NO 50

Woman



	40		-
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
१९	NO	12	NO
No	YES	18	YES
No	HES	35	MES
4ES	YES	38	YES
MES	No	50	NO
GN	No	83	NO

Wowan



Only this leaf is impure

	400		480.
Is a woman	Has a dog	Age	Khows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

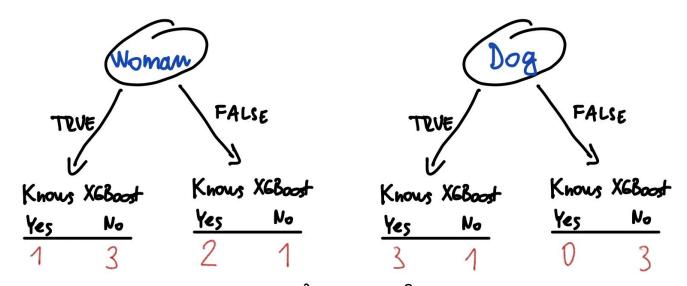
FALSE Knows X6Boost Knows X6Boost Yes

How to quantify which predictor is better?

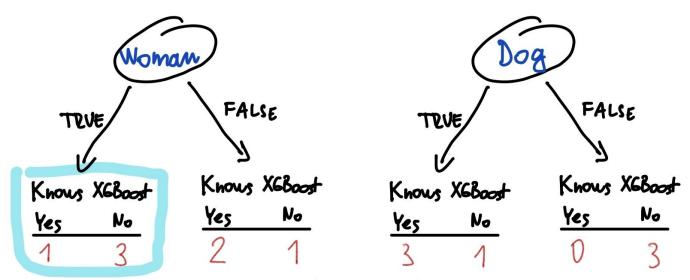
400		Allen.
Has a dog	Age	Khows XGBoost
YES	7	No
NO	12	NO
YES	18	YES
HES	35	MES
Yes	38	YES
No	50	NO
No	83	NO
	A dog YES NO YES HES NO	A dog nge YES 7 NO 12 YES 18 HES 35 YES 38 NO 50

FALSE TEVE Knows X6Boost Knows X6Boost No Yes

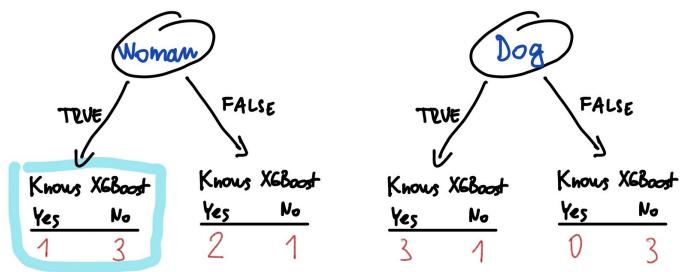
(Entropy, Information Gain)



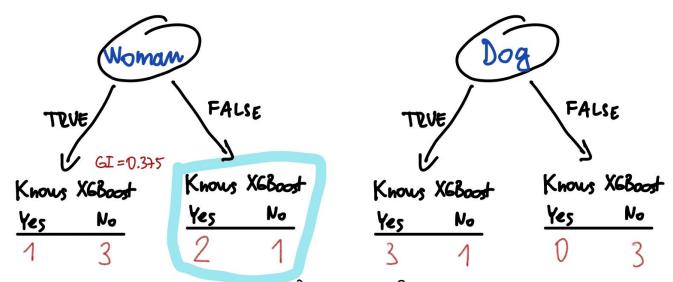
G.I. for a Leaf = $1 - (P[Yes])^2 - (P[No])^2$



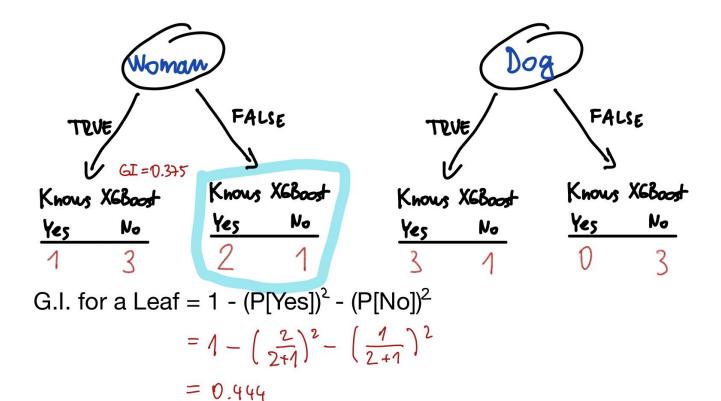
G.I. for a Leaf = 1 -
$$(P[Yes])^2$$
 - $(P[No])^2$
= $1 - (\frac{1}{1+3})^2 - (\frac{3}{1+3})^2$

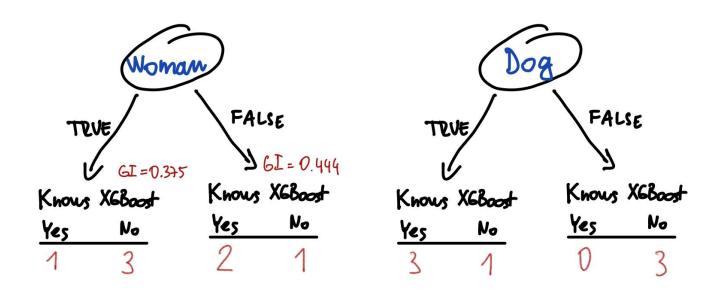


G.I. for a Leaf = 1 -
$$(P[Yes])^2$$
 - $(P[No])^2$
= $1 - (\frac{1}{1+3})^2 - (\frac{3}{1+3})^2$
= 0.375

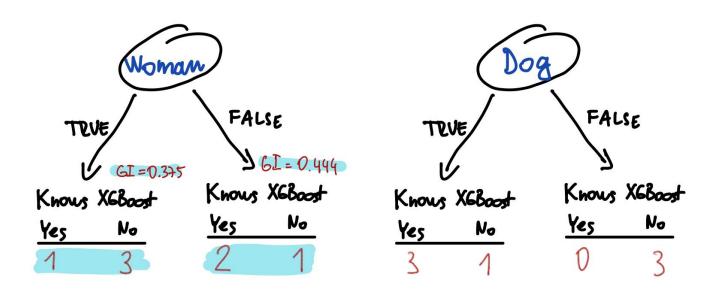


G.I. for a Leaf = $1 - (P[Yes])^2 - (P[No])^2$



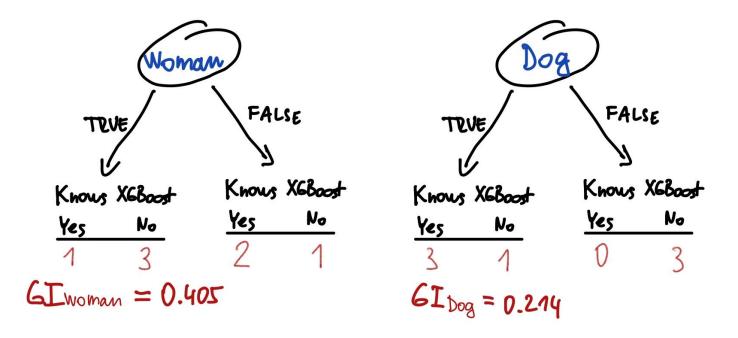


Total Givi impurity = weighted average of Gini Impurities for the Leaves



Total Givi Impurity = weighted average of Gini Impurities for the Leaves

$$= \frac{4}{4+3} \cdot 0.375 + \frac{3}{4+3} \cdot 0.444 = 0.405$$



			100
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	YES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

Knows X6Boost Knows X6Boost Yes No Yes No

Is a woman	Has a dog	Age	Knows XGBoost
MES	YES	7	No
455	NO	12	NO
NO	YES	18	MES
NO	HES	35	MES
hes	Yes	38	YES
MES	No	50	NO
GN	No	83	NO

Knows X6Boost Knows X6Boost Yes No Yes No

How to calculate Gini Impurity with numerical values? 1. SORT AGE IN ASLENDING ORDER

2. CALCULATE ANG FOR ADJACENT PEOPLE

Age	Knows XGBoost	
7	No	
12	NO	
18	MES	
35	MES	
38	YES	
50	NO	
83	NO	

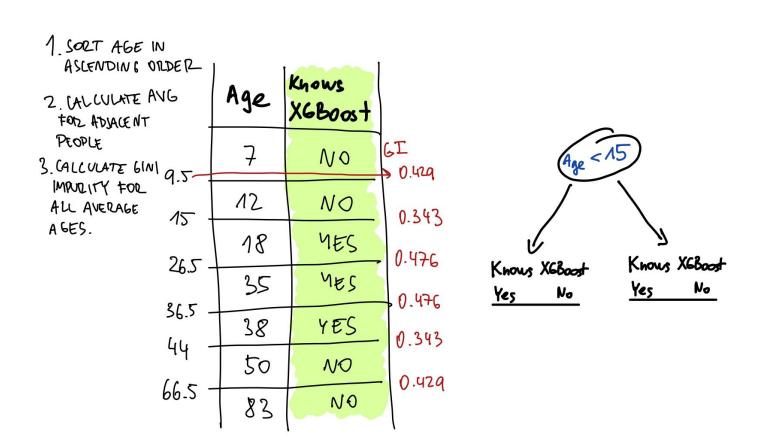
Knows X6Boost Knows X6Boost Yes

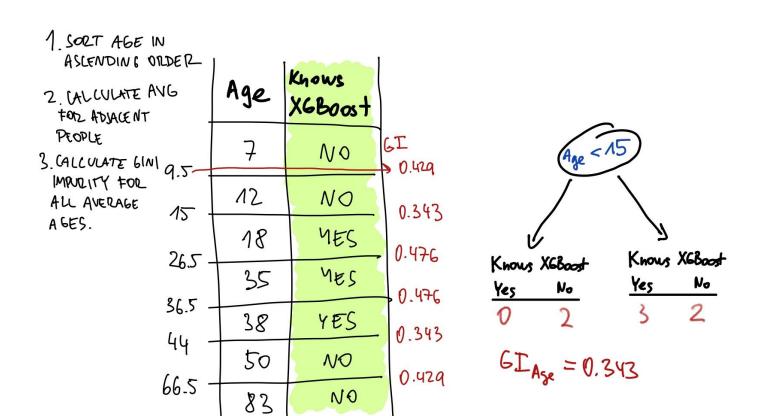
1. SORT AGE IN ASCENDING ORDER 2. CALCULATE ANG FOR ADJACENT	Age	Knows XGBoost
PEOPLE 9.5.	7	No
15 -	12	NO
	18	YES
26.5 -	35	MES
36.5 -	38	YES
44 -	50	NO
66.5	83	NO

Knows X6Boost Knows X6Boost Yes No No Yes

1 SORT AGE IN ASCENDING ORDER Knows Age 2. CALCULATE ANG X6Boost FOR ADJACENT PEOPLE GI NO 3. CALCULATE GINI 9.5-Age < 0.429 IMPURITY FOR 12 NO ALL AVERAGE 0.343 15 AGES. MES 18 0.476 26.5 Knows X6Boost Knows X6Boost MES 35 No Yes Yes No 0.476 36.5 YES 38 0.343 44 50 NO 0.429 66.5 NO 83

1 SORT AGE IN ASCENDING ORDER Knows Age 2. CALCULATE AVG X6Boost FOR ADJACENT PEOPLE GI Age < } NO 3. CALCULATE GINI 9.5-0.429 IMPURITY FOR 12 NO ALL AVERAGE 0.343 15 AGES. MES 18 0.476 Knows X6Boost 26.5 Knows X6Boost MES 35 No Yes Yes No 0.476 36.5 YES 38 0.343 44 50 NO TWO CANDIDATES FOR 0.429 66.5 THRESHOLD NO 83





Is a woman	Has a dog	Age	Knows XGBoost
hES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
ON	HES	35	YES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

Woman

Age

WHICH PREDICTOR SHOULD WE CHOOSE?

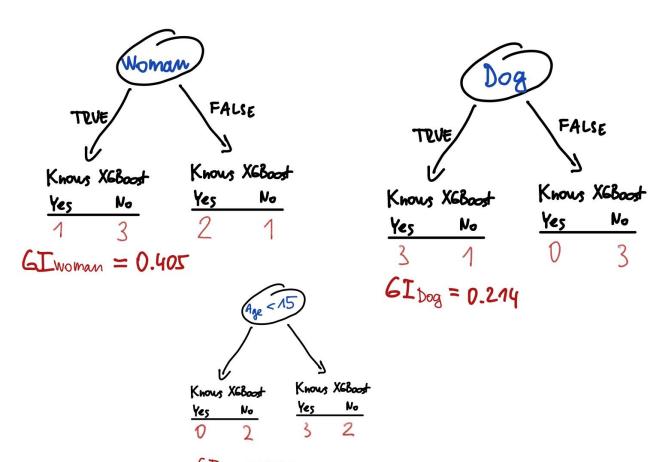
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	YES
4ES	YES	38	YES
MES	No	50	NO
GN	No	83	NO

Woman

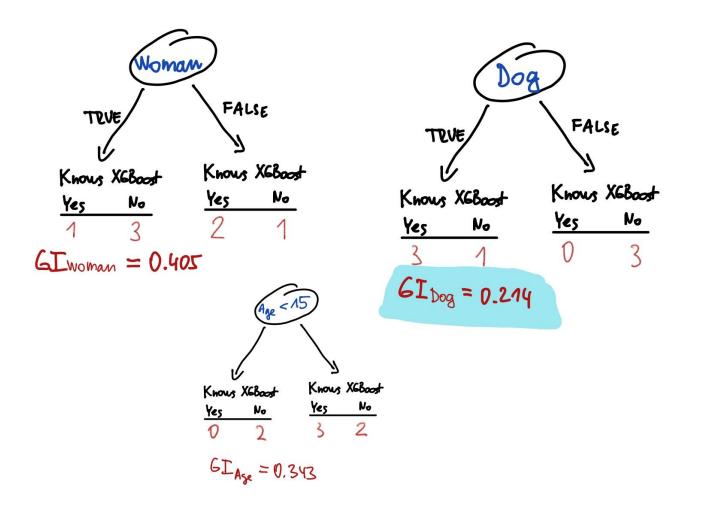
Dog Age

WHICH PREDICTOR SHOULD WE CHOOSE?

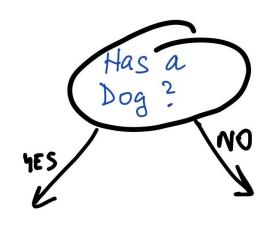
LOWEST GIVI IMPURITY



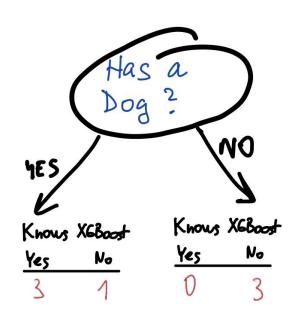
GIASE = 0.343



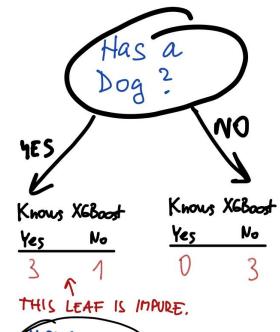
Is a woman	Has a dog	Age	Knows XGBoost
hES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
NO	HES	35	YES
4ES	YES	38	YES
MES	No	50	NO
GN	No	83	NO



Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
ON	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO



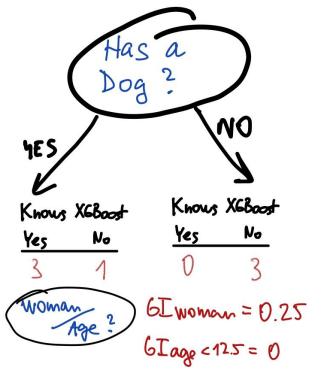
Is a noman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	Yes	38	YES
MES	No	50	NO
GN	No	83	NO



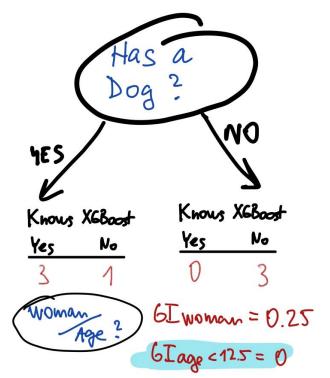
Woman Age

a	Has a dog	Age	Knows XGBoost	Has a Dog?
1ES	YES	7	No	Dog .
455	NO	12	NO	4ES /
NO	YES	18	YES	Knows X6Bast Knows X6Bas
No	HES	35	MES	Yes No Yes No
hes	YES	38	YES	3 1 0 3
MES	No	50	NO	Woman WE CALCUL Age ? GIM IMPURITY
GN	No	83	NO	AGAIN

Is a voman	Has a dog	Age	Knows XGBoost
MES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

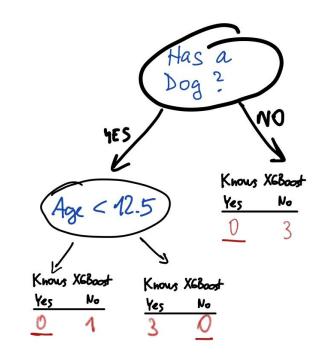


Is a noman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO

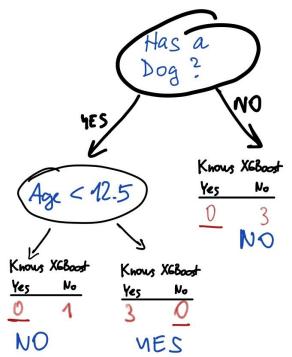


	Has a dog	Age	Knows XGBoost	Has
5	YES	7	No	HES
5	NO	12	NO	Knows XGBoost
seafile	YES	18	YES	Yes No
0	HES	35	MES	Age < 12.5
ES	YES	38	YES	
ES	No	50	NO	Knows XGBoost Knows XGBoost Yes No Yes No
GN	No	83	NO	0 1 3 0

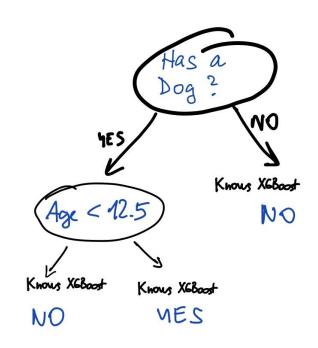
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	YES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO



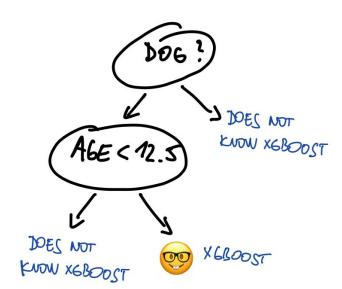
Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	YES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO



Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
455	NO	12	NO
NO	YES	18	YES
No	HES	35	MES
hes	YES	38	YES
MES	No	50	NO
GN	No	83	NO



Is a woman	Has a dog	Age	Knows XGBoost
HES	YES	7	No
१९	NO	12	NO
No	YES	18	YES
aN	HES	35	YES
4ES	YES	38	YES
MES	No	50	NO
GN	No	83	NO



Building trees (summary)

Greedy algorithm:

- 1. consider all features
- 2. consider all possible thresholds
- 3. compute impurity or loss reduction
- 4. pick the best split
- 5. recurse on left and right branch
- 6. stop when: max depth OR not enough samples OR improvement small

Pros and Cons of Decision Trees

- interpretable
- no scaling
- both numerical and categorical
- fast
- nonlinear relationships

- overfitting
- high variance
- instability
- not very accurate

Pros and Cons of Decision Trees

-> Ensemble methods

- overfitting
- high variance
- instability
- not very accurate

Predictors

Ensemble Methods: From Weak Learners to Robust

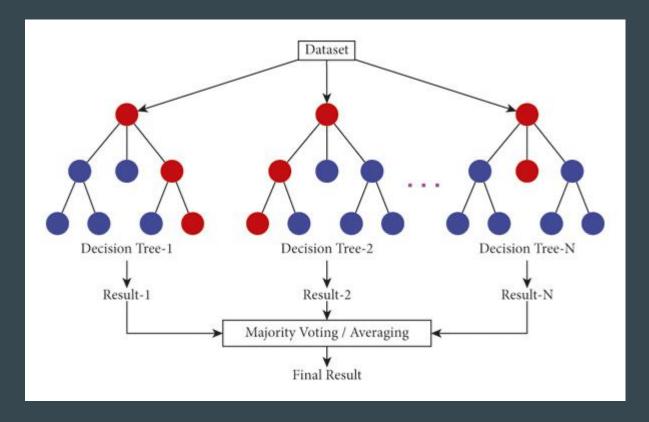
Motivation

- Reduce variance single tree highly unstable
- Reduce bias
 - shallow trees \rightarrow too simple, high bias
 - deep trees → overfit, overly complex

- Bagging (Random Forests)
- Boosting (XGBoost, LightGBM, CatBoost)

Bagging (Random Forest)

bootstrap aggregatingidea: lower variance byaveraging multiple results



Building Random Forest

- create a bootstrapped dataset
- 2. build decision tree using random subset of features at each step

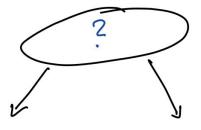
Weight	Is a woman	Has a dog	Age	Knows XGBoost
90	HES	YES	7	No
108	455	NO	12	NO
172	NO	YES	18	YES
186	No	HES	35	MES
152	hes	Yes	38	YES
149	MES	No	50	NO
207	GN	No	83	NO
	108 172 186 152 149	90 YES 108 YES 172 NO 186 NO 152 YES 149 YES	Weight noman a dog 90 MES YES 108 MES NO 172 NO YES 186 NO MES 152 MES MES 149 MES NO	Weight noman a dog 19e 90 4ES YES 7 108 4ES NO 12 172 NO YES 18 186 NO 4ES 35 152 4ES 4ES 38 149 4ES NO 50

,	Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
1	4ES	90	HES	YES	7	No
2	No	108	455	NO	12	NO
3	No	172	NO	YES	18	YES
4	NO	186	No	HES	35	YES
2	No	152	hes	Yes	38	YES
6	hES	149	MES	No	50	NO
7	hes	207	GN	No	83	NO

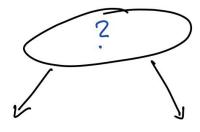
·	Wortch TV	WEIGHT		Has a dog	Age	Knows XGBoost
1	4ES	90	MES	YES	7	No
2	No	108	455	NO	12	NO
3	No	172	NO	YES	18	YES
4	No	186	No	HES	35	MES
5	V 0	152	hes	Yes	38	YES
6	HES	149	MES	No	50	NO
7	hes	207	GN	No	83	NO

,	Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
1	4ES	90	MES	YES	7	No
2	Νο	108	455	NO	12	NO
3	No	172	NO	YES	18	YES
4	NO	186	No	HES	35	MES
7	HES	207	NO	NO	83	NO
1	YES	90	YES	YES	+	NO
7	hes	207	GN	No	83	NO

Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
4ES	90	MES	YES	7	No
No	108	455	NO	12	NO
No	172	No	YES	18	YES
No	186	No	HES	35	MES
HES	207	NO	NO	83	NO
YES	90	YES	4ES	+	No
hes	207	GN	No	83	NO



Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
4ES	90	HES	YES	7	No
NO	108	455	NO	12	NO
No	172	No	YES	18	YES
No	186	No	HES	35	MES
hes	207	NO	NO	83	NO
YES	90	YES	4ES	+	No
HES	207	GN	No	83	NO

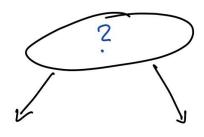


-> CHOOSE RANDOM

SUBSET OF VARIABLES

E.G., [Has a Dog, Age]

Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
4ES	90	MES	YES	7	No
Nο	108	455	NO	12	NO
No	172	No	YES	18	YES
Nο	186	No	HES	35	MES
hes	207	NO	NO	83	NO
YES	90	YES	4ES	+	NO
hes	207	GN	No	83	NO



-> CHOOSE RANDOM SUBSET OF VARIABLES E.G., [Has a Dog, Age]

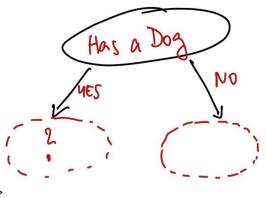
-) DETERMINE THE BEST CANDIDATE BY CALCULATING GINI INPURITY
GIDOG = ... GIAG = ...

Watch TV	Weight	Is a woman	Has a dog	Age	Knows XGBoost
4ES	90	HES	YES	7	No
No	108	455	NO	12	NO
No	172	No	YES	18	YES
No	186	No	HES	35	MES
HES	207	NO	NO	83	NO
YES	90	465	4ES	+	NO
HES	207	GN	No	83	NO

-> DETERMINE THE BEST CANDIDATE BY CALCULATING GINI INPURITY

Assume GIDOg < GIAGE

Weight	Is a woman	Has a doa	Age	Knows
			10	XGBoost
90	HES	YES	7	No
108	५६८	NO	12	NO
172	NO	YES	18	YES
186	No	HES	35	MES
207	NO	NO	83	NO
90	YES	4ES	÷	NO
207	ON	No	83	NO
	108 172 186 207 90	108 YES 172 NO 186 NO 207 NO 90 YES	108 YES NO 172 NO YES 186 NO YES 207 NO NO 90 YES YES	108 YES NO 12 172 NO YES 18 186 NO YES 35 207 NO NO 83 90 YES YES 7

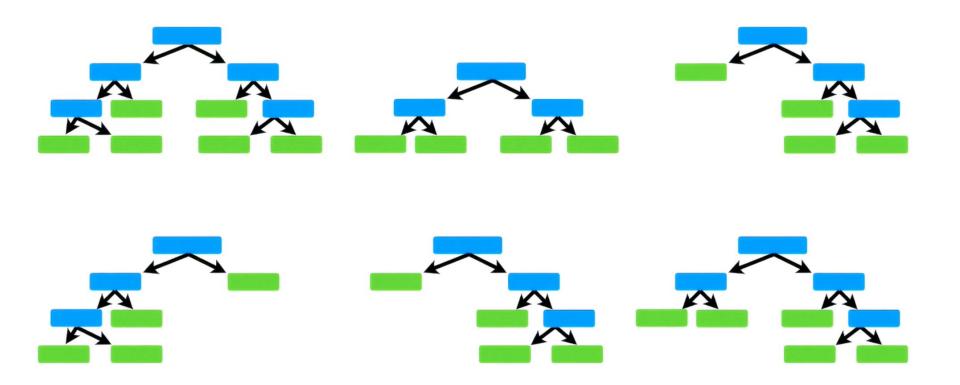


- OF VARIABLES AGAIN
- -> SELECT THE BEST SPLIT
- BUILD THE FULL TREE

+					
Watch TV	Weight	Is a woman	Has a dog		Knows XGBoost
4ES	90	HES	YES	7	No
Nο	108	455	NO	12	NO
No	172	No	YES	18	YES
No	186	No	HES	35	MES
hes	207	NO	NO	83	NO
485	90	YES	MES	+	No
hes	207	NO	No	83	NO

Building Random Forest

- 1. create a bootstrapped dataset
- 2. build decision tree using random subset of features at each step
- 3. repeat for n=number of trees times



Obtaining Prediction

- we evaluate all individual trees in random forest
- aggregate the result
 - majority vote / average value

bootstrapped dataset + aggregating = bagging

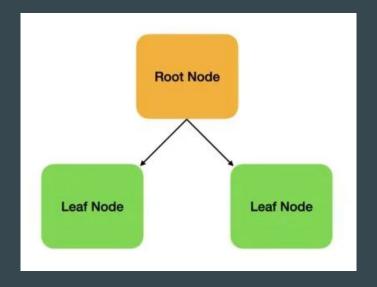
Limitations of Bagging

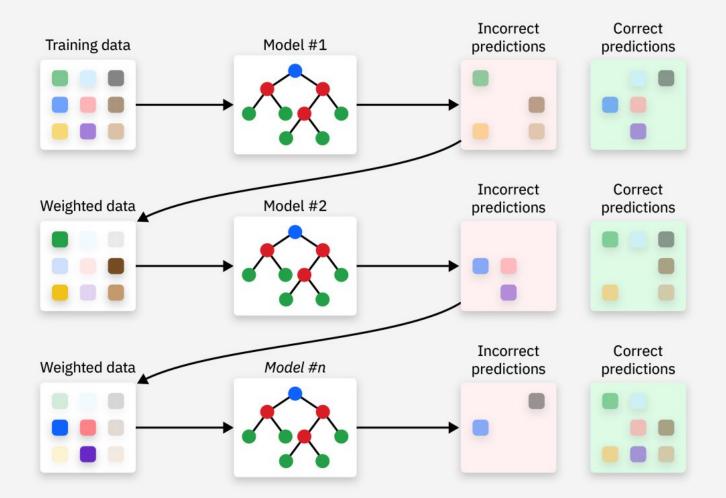
- ✓ Pros of Random Forests
 - variance reduction
 - + stability
- X Limitations of Random Forests
 - averaging does not reduce bias
 - slower inference
 - trees built independently: they don't learn from previous errors

- What if we could build trees that learn from each other?

Boosting

- idea: sequentially build trees correcting error of previous model
- increase weight of misclassified examples
- usually shallow trees / stumps
- combine predictions
- AdaBoost, Gradient Boosting





Gradient Boosting

- gradient descent to minimize loss function
- -> gradient-guided correction

Step 1: initial prediction (avg)

Step 2: calculate pseudo-residuals

```
Algorithm 1: Gradient_Boost

\begin{array}{ll}
I & F_0(\mathbf{x}) = \arg\min_{\rho} \sum_{i=1}^{N} L\left(y_i, \rho\right) \\
2 & \text{For } m = 1 \text{ to } M \text{ do:} \\
3 & \tilde{y}_i = -\left[\frac{\partial L(y_i, F(\mathbf{x}_i))}{\partial F(\mathbf{x}_i)}\right]_{F(\mathbf{x}) = F_{m-1}(\mathbf{x})}, \ i = 1, N \\
4 & \mathbf{a}_m = \arg\min_{\mathbf{a}, \beta} \sum_{i=1}^{N} [\tilde{y}_i - \beta h(\mathbf{x}_i; \mathbf{a})]^2 \\
5 & \rho_m = \arg\min_{\rho} \sum_{i=1}^{N} L\left(y_i, F_{m-1}(\mathbf{x}_i) + \rho h(\mathbf{x}_i; \mathbf{a}_m)\right) \\
6 & F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + \rho_m h(\mathbf{x}; \mathbf{a}_m) \\
7 & \text{endFor} \\
& \text{end Algorithm}
\end{array}
```

Step 3: build decision tree (8 to 32 leaves) fitting residuals

-> Iterate 2, 3 until stopping criterion

$$MSE = \frac{1}{2} (Observed - Predicted)^2$$

step 1: Initial prediction

Step 1: Initial prediction
$$\frac{dL}{d\hat{g}} = (predicted - observed)$$

$$\frac{123.45 + 56.78 + 345.67 + 48.01}{123.45 + 56.78 + 345.67 + 48.01} = 156$$

 $MSE = \frac{1}{2} (Observed - Predicted)^2$

Age	Category	Purchase Weight (kg)	Amount	PSEUDO RESIDUALS	Step 1: Initial prediction $\frac{dL}{dn} = (predicted - observed)$
25	Electronics	2.5	<u> </u>	-32.55	
34	Clothing	1.3	56.78	-99.22	Step 2: Calculate pseudo-residuals
42	Electrotics	5.0	345.67	189.45	J P Z COCCINA & PSEUDO-PESIDUALS

3.2

Hardware

98.01

-58.01

 $MSE = \frac{1}{2} (Observed - Predicted)^2$ Step 1: Initial prediction

P.Weight>2 -2801 -99.22

Step 3: Build a weak learner Calculate predictions for each row Calegon = E P.Weight>2

Age	Category	Purchase Weight (kg)	Amount	PSEUDO BESIDUACS	NEW PRETACTIONS	Initial guess Leaf value
25	Electronics	2.5	<u> </u>	-32.55-	152.345	=156 + 0.1.(-32.55)
34	Clothing	1.3	56.78	-99.22	146.078	Learning rute
42	Electrotics	5.0	345.67	189.45	774,945	
19	Hardware	3.2	98.01	-28.04	150.199	L

-32.55

189.45

Step 4: Iterate

-> calculate new pseudo-residuals -> build new amother weat learner

 $\hat{y} = \text{Initial gness} + e \cdot (r_1 + r_2 + ... + r_i)$ after i iterations

Age	Category	Purchase Weight (kg)	Amount	PSEUDO RESIDUALS	NEW P PE DICTIONS
25	Electronics	2.5	ኂ ን. 45		152.745
34	Clothing	1.3	56.78		146.078
42	Electrotics	5.0	345.67		1 3 4.945
19	Hardware	3.2	98.01		150.199

- eXtreme Gradient BOOSTting
- GB with several modifications:

- eXtreme Gradient BOOSTting
- GB with several modifications:

Objective function

$$\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$$

where $\Omega(f) = \gamma T + \frac{1}{2} \lambda \|w\|^2$

T = number of leaves in the tree w_j = weight (output value) of leaf j γ = penalty for adding a leaf = pruning λ = L2 regularization on leaf weights

- eXtreme Gradient BOOSTting
- GB with several modifications:

Deciding the split

-> maximizing Gain

$$ext{Gain} = rac{1}{2} \left(rac{G_L^2}{H_L + \lambda} + rac{G_R^2}{H_R + \lambda} - rac{(G_L + G_R)^2}{H_L + H_R + \lambda}
ight) - \gamma$$

G sum of gradients H sum of hessians

CART: **unregularized** -> reduce MSE or impurity XGBoost: regularized -> max Gain

GRADIENT
$$g_i = g_i - g_i$$
 (residual)

HESSIAN $h_i = 1$ (constant) of residuals

NODE SCORE: $\frac{G_L^2}{H_L + \lambda} = \frac{\left(\sum r_i\right)^2}{n_L + \lambda}$

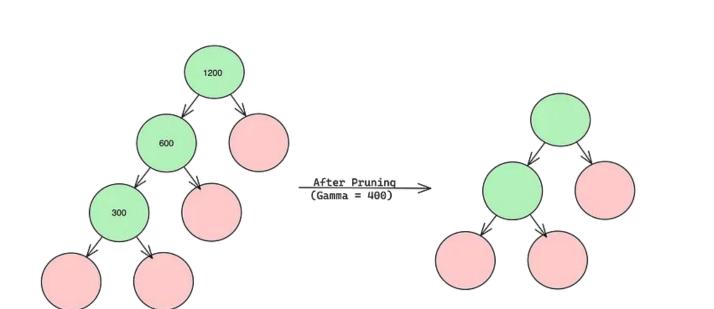
Gain = $\frac{1}{2} \left(\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_0 + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_0 + \lambda} \right) - \lambda$

MSE; L= 1 (4: -3:)

2001

Sum of squared residuals

CART: score = \(\sigma_{\text{r}}^2 \) (root) - \(\leftilde{\text{r}}_{\text{i}}^2 \) (left) + \(\leftilde{\text{r}}_{\text{i}}^2 \) (right)



- eXtreme Gradient BOOSTting
- GB with several modifications:

Output value of a Leaf

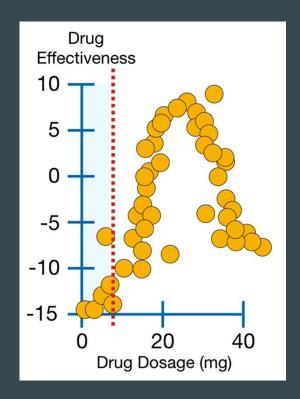
$$w_j = -rac{G_j}{H_j + \lambda}$$

MSE and $\lambda=0$: average of residuals

- eXtreme Gradient BOOSTting
- GB with several modifications
- computing predictions: same as GB

Approximate Greedy Algorithm

- avoids testing every threshold
- approximation: using quantiles
 - Weighted Quantiles Sketch alg.

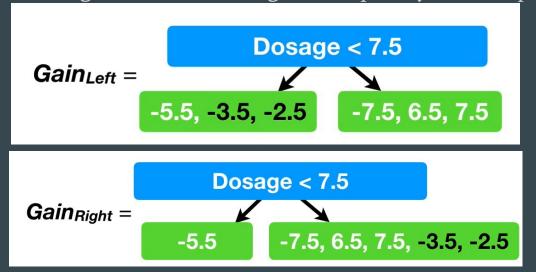


Approximate Greedy Algorithm

Parallel Learning

Predicted Drug
Effectiveness
0.5

Building trees with missing data - Sparsity-Aware Split Finding



Dosage	Drug Effectiveness	Residuals
10	-7	-7.5
???	-3	-3.5
21	7	6.5
25	8	7.5
5	-5	-5.5
???	-2	-2.5

Approximate Greedy Algorithm

Parallel Learning

Sparsity-Aware Split Finding

Cache-Aware access

-storing gradients and hessians in Cache -> speedup

Approximate Greedy Algorithm

Parallel Learning

Sparsity-Aware Split Finding

Cache-Aware access

- -> other memory optimizations
- -> subsampling (rows and columns)

CatBoost

- = CATegorical BOOSTing
- designed for categorical data
- uses Ordered Target Encoding
- symmetric trees same decision on the same level
 - can be fitter in parallel, very fast with GPU
- -> best for categorical-heavy datasets

LightGBM

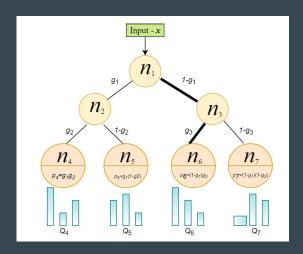
- faster
- leaf-wise tree building splits the node with the largest split gain first
 - -> unbalanced trees
- low memory usage
- better categorical features handling than XGBoost
- tend to overfit
- -> best for fast training on big datasets

Deep Neural Models for Tabular Data

Two main categories of Deep Models

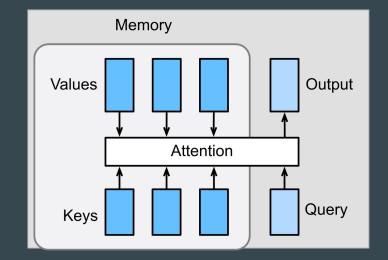
Differentiable Trees

- decision trees are not differentiable
- smoothing the decision function
- softmax, sparsemax



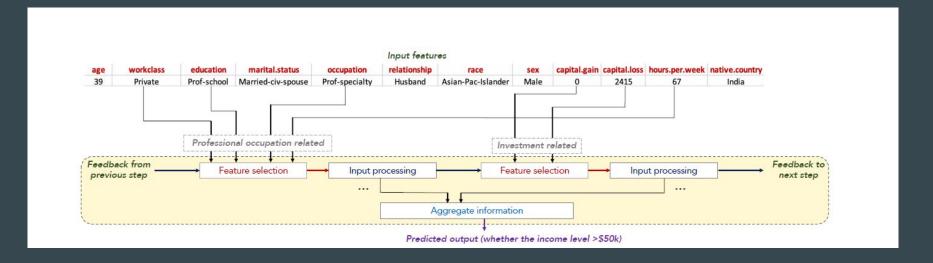
Attention-Based Models

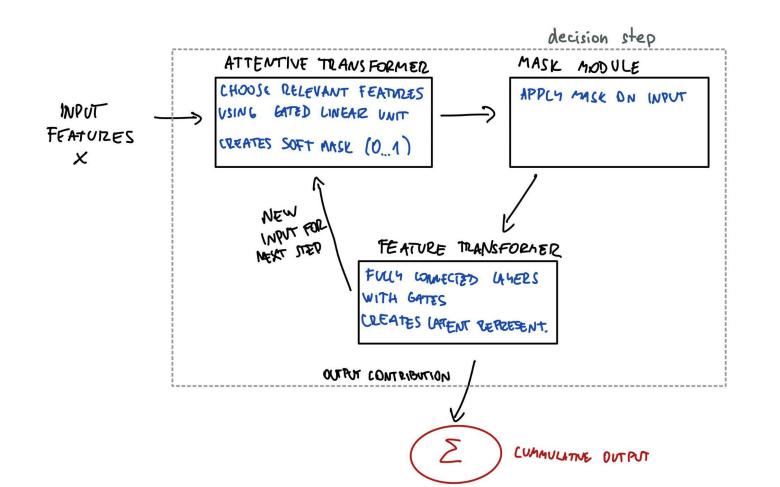
 using attention mechanism detect interactions between features or samples



TabNet

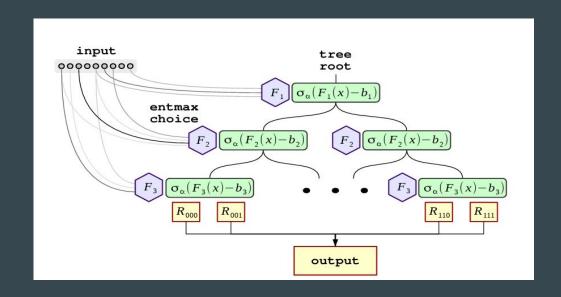
- choosing relevant features for each row using mask and attention
- different relevant features for each data input
- usually 4-10 "decision" steps





Neural Oblivious Decision Ensembles (NODE)

- inspired by CatBoost
- ensemble of **differentiable** "trees"
- not a CART but neural layer
- ODT: all nodes in same depth use the same split rule
- soft routing: softmax instead of 0/1



DNF-Net

- simulating DNFs
- DNF-Net = ensemble of DNNF blocks
- soft AND and soft OR

$$OR(\mathbf{x}) \triangleq \tanh\left(\sum_{i=1}^{d} \mathbf{x}_i + d - 1.5\right)$$

$$AND(\mathbf{x}) \triangleq \tanh\left(\sum_{i=1}^{d} \mathbf{x}_i - d + 1.5\right)$$

$$(A \wedge \neg B \wedge \neg C) \vee (\neg D \wedge E \wedge F \wedge D \wedge F)$$

INPUT: XERd

DNNF Block

 $L(x) = \tanh (x^T w + b) \in \mathbb{R}^m$ L(x) LEARN EMBEDDINGS #LITERALS = m

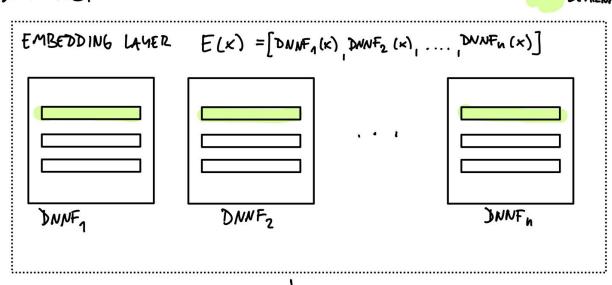
LONJUNCTIONS OVER L AND # CONJUNCTIONS = k

OUTPUT - NEURAL OR GATE DNNF(x) = OP([AND (L(x)) AND (L(x)) ... AND (k(L(x))))

C1 C2 ... CE FIXED MASKING VECTORS

OITPUT: HOW WELL & SATISFIES THE BNF FORMULA

DNF-Net



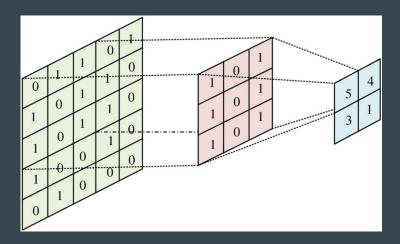
E.G. BINARY CLASSIFICATION DNF-Nef(x) = o (\(\sum_{i=1}^{\infty} \text{ U}_i \) DNNF; (x) + b;)

OUTPUT (E.G. (0,1))

1D-CNN

- kaggle multi-label classification, probability prediction
- CNN for feature extraction
- expect local correlation between features
- order of columns usually does not matter

- idea: re-order features to make them correlated
- expand dimensionality -> soft-ordering
- apply CNNs



Performance Comparison: Deep Models and XGBoost

Data Description, Training and Evaluation Metrics

- datasets from DNF-Net, NODE, TabNet papers + 2 Kaggle
- 11 classification and regression tasks
- cross-entropy loss, RMSE
- testing significance of performance differences

Dataset	Features	Classes	Samples	Source	Paper	
Gesture Phase	32	5	9.8k	OpenML	DNF-Net	
Gas Concentrations	129	6	13.9k	OpenML	DNF-Net	
Eye Movements	26	3	10.9k	OpenML	DNF-Net	
Epsilon	2000	2	500k	PASCAL Challenge 2008	NODE	
YearPrediction	90	1	515k	Million Song Dataset	NODE	
Microsoft (MSLR)	136	5	964k	MSLR-WEB10K	NODE	
Rossmann Store Sales	10	1	1018K	Kaggle	TabNet	
Forest Cover Type	54	7	580k	Kaggle	TabNet	
Higgs Boson	30	2	800k	Kaggle	TabNet	
Shrutime	11	2	10k	Kaggle	New dataset	
Blastchar	20	2	7k	Kaggle	New dataset	
Table 1: Description of the tabular datasets						

Requirements for Real-World Applications

- high accuracy
- efficient training and inference
- short optimization time

Testing Deep Models on Unseen Datasets

- datasets not included in original paper
- models perform worse than datasets original models
- no deep model consistently outperformed others
- XGBoost generally outperformed deep models (Eye, Gesture, MSLR, Shrutime, Blastchar)
- XGBoost significantly better than not original models in 8 of 11 cases
- ensemble of deep models and XGBoost usually outperformed other models

XGBoost	490.18 ± 1.19	3.13 ± 0.09	21.62 ± 0.33	2.18 ± 0.20	56.07 ±0.65	80.64 ± 0.80
NODE	488.59 ± 1.24	4.15 ± 0.13	21.19 ± 0.69	2.17 ± 0.18	68.35 ± 0.66	92.12 ± 0.82
DNF-Net	503.83 ± 1.41	3.96 ± 0.11	23.68 ± 0.83	1.44 ±0.09	68.38 ± 0.65	86.98 ± 0.74
TabNet	485.12 ±1.93	3.01 ± 0.08	21.14 ± 0.20	1.92 ± 0.14	67.13 ± 0.69	96.42 ± 0.87
1D-CNN	493.81 ± 2.23	3.51 ± 0.13	22.33 ± 0.73	1.79 ± 0.19	67.9 ± 0.64	97.89 ± 0.82
Simple Ensemble	488.57 ± 2.14	3.19 ± 0.18	22.46 ± 0.38	2.36 ± 0.13	58.72 ± 0.67	89.45 ± 0.89
Deep Ensemble w/o XGBoost	489.94 ± 2.09	3.52 ± 0.10	22.41 ± 0.54	1.98 ± 0.13	69.28 ± 0.62	93.50 ± 0.75
Deep Ensemble w XGBoost	485.33 ± 1.29	2.99 ± 0.08	22.34 ± 0.81	1.69 ± 0.10	59.43 ± 0.60	78.93 ± 0.73
				—		
		TabNet			DNF-Net	
Model Name	YearPredic	tion MSL1	R Epsilo	n :	Shrutime	Blastchar
XGBoost	77.98 ± 0	0.11 55.43	±2e-2 11.	12±3e-2 1	3.82 ± 0.19	20.39 ± 0.21
NODE	76.39 ± 0	0.13 55.72=	±3e-2 10. 3	39 ±1e-2 1	4.61 ± 0.10	21.40 ± 0.25

TabNet	83.19 ± 0.19	56.04±1e-2	$11.92\pm 3e-2$	$14.94\pm, 0.13$	23.72 ± 0.19
1D-CNN	78.94 ± 0.14	55.97±4e-2	11.08±6e-2	15.31 ± 0.16	24.68 ± 0.22
Simple Ensemble	78.01 ± 0.17	$55.46 \pm 4e-2$	11.07±4e-2	$13.61\pm, 0.14$	21.18 ± 0.17
Deep Ensemble w/o XGBoost	78.99 ± 0.11	$55.59 \pm 3e-2$	$10.95\pm1e-2$	14.69 ± 0.11	24.25 ± 0.22
Deep Ensemble w XGBoost	76.19 ± 0.21	55.38 ±1e-2	11.18±1e-2	13.10 ± 0.15	20.18 ±0.16

56.83±3e-2

CoverType Higgs

Rossman

 81.21 ± 0.18

Model Name

DNF-Net

12.23±4e-2

Gas

Eye

 16.8 ± 0.09

Gesture

 27.91 ± 0.17

New datasets

NODE

Direct Comparison

- calculating relative performance to the best model
- average relative performance per model on unseen datasets
- best: Ensemble w XGBoost
- best single model: XGBoost
- deep models: last 4 places

Name	Average Relative Performance (%)
XGBoost	3.34
NODE	14.21
DNF-Net	11.96
TabNet	10.51
1D-CNN	7.56
Simple Ensemble	3.15
Deep Ensemble w/o XGBoost	6.91
Deep Ensemble w XGBoost	2.32

Why are the Deep Models Worse?

- selection bias
- hyperparameters optimization (more extensive search could lead to better performance)

Do we need both?

- ensemble of deep models with XGBoost were the best
- which component of ensemble is mandatory?
- do we need deep models?
- (XGBoost, SVM, CatBoost)
- (deep model ensemble)
- (deep models + XGBoost)

Comparison of Ensemble Models

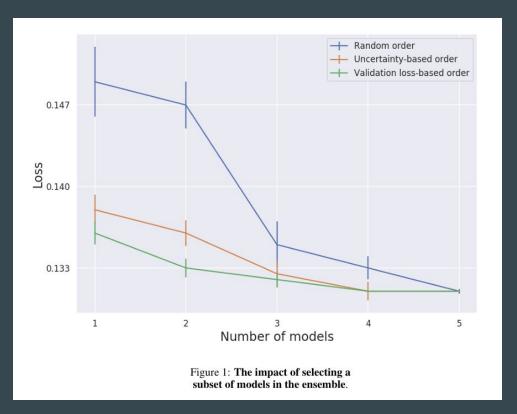
- deep models ensemble did not perform well
- classical ensemble better than deep models
- however, deep models combined with XGBoost are significantly better than classical ensemble or XGBoost itself

Name	Average Relative Performance (%)
XGBoost	3.34
NODE	14.21
DNF-Net	11.96
TabNet	10.51
1D-CNN	7.56
Simple Ensemble	3.15
Deep Ensemble w/o XGBoost	6.91
Deep Ensemble w XGBoost	2.32

Performance & Computation Demand Trade-off

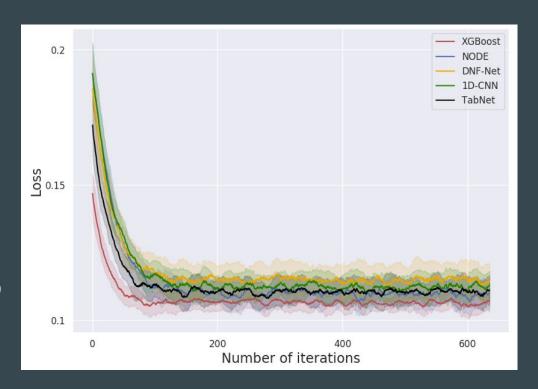
- + performance
- + expensive computation
- Do we need all models in the ensemble?
- How to choose the subset?

- 3 models ≈ full ensemble
- significant differences between selection approaches



How difficult is the hyperparameter optimization?

- limited time for training in real applications
- FLOPS not suitable different architectures
- runtime affected by software optimizations(XGBoost)
- proxy measure: number of optimization iterations
- XGBoost much faster than deep models



- Deep models often underperform on unseen datasets.
- XGBoost remains a strong baseline.

- Deep models often underperform on unseen datasets.
- XGBoost remains a strong baseline.
- Ensembles combining DL with XGBoost outperform individual models.

- Deep models often underperform on unseen datasets.
- XGBoost remains a strong baseline.
- Ensembles combining DL with XGBoost outperform individual models.
- DL models harder to optimize

- Deep models often underperform on unseen datasets.
- XGBoost remains a strong baseline.
- Ensembles combining DL with XGBoost outperform individual models.
- DL models harder to optimize

Limited time? -> XGBoost

Maximal performance? -> Add deep models to an ensemble

Grinsztajn et al.: Why do tree-based models still outperform deep learning on typical tabular data?

Random Forest

XGBoost

GBTree

SAINT

Resnet

FT_Transformer

MLP

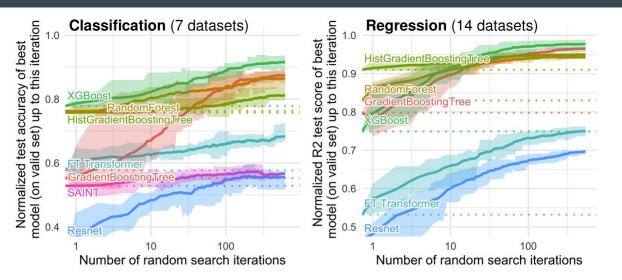


Figure 2: **Benchmark on medium-sized datasets, with both numerical and categorical features**. Dotted lines correspond to the score of the default hyperparameters, which is also the first random search iteration. Each value corresponds to the test score of the best model (on the validation set) after a specific number of random search iterations, averaged on 15 shuffles of the random search order. The ribbon corresponds to the minimum and maximum scores on these 15 shuffles.

