StyleGAN Family

Application

- Digital Art
 - StyleGAN, CycleGAN
- Super Resolution
 - SRGAN, SOUP-GAN
- Object Detection
 - Perceptual GAN
- Reinforcement Learning
 - GAIL

Supplement

- If images are normalized between (-1, 1), the last layer's active function is tanh
- If images are normalized between(0, 1), the last layer's active function is sigmoid

Image Quality Metric

- FID Score
 - Frechet Inception Distance
 - Compare the distribution of generated images with the distribution of real images that were used to train the generator
 - Use a pre-trained Inception V3 to get feature (Remove the MLP layers)

Image Quality Metric

$$FID = ||\mu_r - \mu_g||^2 + Tr(\sum_r + \sum_g - 2(\sum_r \sum_g)^{\frac{1}{2}})$$

ProGAN Motivation

- Three Image Generation Methods
 - Autoregression Model: PixelRNN Slow
 - VAE Blurry Result
 - GAN Small Resolution and Limit Variation
- Why is GANs hard to generate high resolution images?
 - Gradient Problem (Odena et al., 2017)
 - Small Batch Size

ProGAN Overview

- In 2017, Nividia proposed ProGAN (Progressive GAN)
- Key to Generate High:
 - Train both generator and discriminator in a progressive growth way

Progressive Growth

Progressive Growth

Smooth Fade In: During the training, α will increase from 0 to 1

Progressive Growth

- Benefits:
 - More stable: Each layer increase the difficult slowly, like how human learn math
 - Low layers: Pose, Face Shape
 - Medium Layers: Hair Style, Eye Postion
 - High Layers: Eyes Color, Skin
 - Reduce Train Time
 - 2–6 Times Faster

Results

Mao et al. (2016b) (128×128)

Gulrajani et al. (2017) (128 \times 128)

Our (256×256)

StyleGAN Overview

- Disadvantages with ProGAN:
 - Like other GANs, ProGAN has a poor ability to control specified aspects of generated images.
- Contributions:
 - Style-based Generator
 - Methods to Measure the Disentanglement
 - A High Quality Human Face Dataset

Style-based Generator

- Use a learned const matrix as initial input
- Mapping Netoworks:
 - Latent Z -> Latent W
- Adaln:
 - Specialize w to styles y = (ys, yb)
 - Mix the style into images

•
$$AdaIn(x_i, y) = y_{s,i} \frac{x_i - \mu(x_i)}{\sigma(x_i)} + y_{b,i}$$

Add Noise into images

StyleGAN Style-based Generator

- Why convert latent Z into intermedia latent W?
- Disentanglement
 - A latent space that consists of linear subspaces
 - Each subspaces controls one factor of variation
- Sampling probability of each combination of factors in latent Z need match the corresponding density in the training data
- Intermedia Latent W is sampled from a by learned function rather than a fixed distribution

Style-based Generator

Style-based Generator

- Mixing regularization
 - During the train, image generated from a mixing of two latent codes
 - Encourage the styles to localize
- FID Scores of applying mixing regularization

Mixing	Number of latents during testing							
regularization	1	2	3	4				
Е 0%	4.42	8.22	12.88	17.41				
50%	4.41	6.10	8.71	11.61				
F 90%	4.40	5.11	6.88	9.03				
100%	4.83	5.17	6.63	8.40				

Latent A

StyleGAN Style-based Generator

- Stochastic variation
 - There are lots of aspects in human portraits can be consider stochastic
 - Freckles, skin pores or placement of hairs
- StyleGAN introduce these stochastic aspects with noise

(a) Generated image (b) Stochastic variation (c) Standard deviation

Style-based Generator

Methods to Measure the Disentanglement

- StyleGAN introduce two methods to measure the Disentanglement
 - Perceptual path length
 - Linear separabilit

Perceptual path length

- Latent space interpolations
 - Interpolation of latent-space vectors may yield surprisingly non-linear changes in the image, which means the latent space is entangled and the factors of variation are not properly separated.

Interpolation in Latent Space

Perceptual path length

- https://github.com/NVlabs/stylegan/blob/master/metrics/perceptual_path_length.py
- Perceptual path length
 - Whether the image changes smoothly in "perceptual"
- Equations for compute perceptual path length

•
$$L_z = E[\frac{1}{\epsilon_1^2}d(G(slerp(z_1, z_2; t)), G(slerp(z_1, z_2; t + \epsilon)))]$$

 $L_w = E[\frac{1}{\epsilon^2}d(G(slerp(f(z_1), f(z_2); t)), G(slerp(f(z_1), f(z_2); t + \epsilon)))]$

StyleGAN Linear separabilit

- https://github.com/NVlabs/stylegan/blob/master/metrics/linear_separability.py
- Linear separabilit
 - If latent space is well disentangled, it would be easier to do classification in the latent space (Easily train some simple classifier, for example SVM)
 - Train SVM on latent space
 - Train CNN on images from latent spcace
 - Compare the outputs' difference of two classifiers

Linear separabilit

- Train auxiliary classification networks for a number of binary attribute Linear separability
- Get 100,000 labeled latent-space vector from the auxiliary classification networks
- Fit a linear SVM for each attribute to predict the label based on the latent-space point —z for traditional and w for style-based and classify the points by this plane.
- Compute the final with equation

$$exp(\sum_{i} H(Y_i | X_i))$$

StyleGAN Results

Method	Path l	Separa-		
Methou	full	end	bility	
B Traditional generator \mathcal{Z}	412.0	415.3	10.78	
D Style-based generator \mathcal{W}	446.2	376.6	3.61	
E + Add noise inputs W	200.5	160.6	3.54	
+ Mixing 50% W	231.5	182.1	3.51	
F + Mixing 90% W	234.0	195.9	3.79	

Method	FID	Path 1	Separa-	
Method	FID	full	end	bility
B Traditional 0 Z	5.25	412.0	415.3	10.78
Traditional 8 Z	4.87	896.2	902.0	170.29
Traditional 8 W	4.87	324.5	212.2	6.52
Style-based 0 Z	5.06	283.5	285.5	9.88
Style-based 1 W	4.60	219.9	209.4	6.81
Style-based 2 W	4.43	217.8	199.9	6.25
F Style-based 8 W	4.40	234.0	195.9	3.79

StyleGAN Results

Motivation

- Problem of image generated from StyleGAN
 - Water droplet -like artifacts in some generated images from StyleGAN; both images and features

Overview

- Try to improve the generated images' quality by applying several methods to StyleGAN
- Key changes:
 - Modify the architecture of generator
 - Lazy regularization
 - Path length regularization
 - Remove Progressive growth

StyleGAN2 StyleGAN2 Generator

- What cause the water droplet -like artifacts?
- Hypothesis
 - The normalize operation of AdaIn will destroy the information of features relative to each other
 - With Adaln, Generator creating a strong, localized spike that dominates the statistics, then the generator can effectively scale the signal as it likes elsewhere.
 - Experiments support this hypothesis

StyleGAN2 Generator

Lazy regularization and Path length regularization

- Lazy regularization
 - Normally, loss function and regularization are computed at same time.
 - In StyleGAN2, to reduce the computational cost and memory use, the regularization computed in every 16 steps.
- Path length regularization
 - Image distances of the continuous linear interpolation points should be similar
 - $E_{w,y} N(0,I) (||J_W^T y||_2 a)^2$

Problem with Progressive Growth

Different Generators and Discriminator without Progressive Growth

Problem with Progressive Growth

Configuration	FFHQ, 1024×1024				LSUN Car, 512×384			
	$FID \downarrow$	Path length ↓	Precision ↑	Recall ↑	FID↓	Path length ↓	Precision ↑	Recall ↑
A Baseline StyleGAN [24]	4.40	212.1	0.721	0.399	3.27	1484.5	0.701	0.435
B + Weight demodulation	4.39	175.4	0.702	0.425	3.04	862.4	0.685	0.488
C + Lazy regularization	4.38	158.0	0.719	0.427	2.83	981.6	0.688	0.493
D + Path length regularization	4.34	122.5	0.715	0.418	3.43	651.2	0.697	0.452
E + No growing, new G & D arch.	3.31	124.5	0.705	0.449	3.19	471.2	0.690	0.454
F + Large networks (StyleGAN2)	2.84	145.0	0.689	0.492	2.32	415.5	0.678	0.514
Config A with large networks	3.98	199.2	0.716	0.422	_	_	_	_

StyleGAN2 Problem with Progressive Growth

FFHQ	D original		D inpu	t skips	D residual	
	FID	PPL	FID	PPL	FID	PPL
G original	4.32	265	4.18	235	3.58	269
G output skips	4.33	169	3.77	127	3.31	125
G residual	4.35	203	3.96	229	3.79	243

LSUN Car	D original		D input skips		D residual	
	FID	PPL	FID	PPL	FID	PPL
G original	3.75	905	3.23	758	3.25	802
G output skips	3.77	544	3.86	316	3.19	471
G residual	3.93	981	3.40	667	2.66	645

Project image to latent code

- Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space
- It's a reversed way of image generation.
 - Latent code -> Image
 - Image -> Latent code
- Could be used to compare similarity of two images

Project image to latent code

- Method 1
 - Train an auto encoder to encode images to latent space
 - Fast, but poor generalization ability
- Method 2
 - Optimize a random latent code
 - Slow, but good generalization ability

Results

Demo Time

Thank You