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Optimal Strategy

Coin Toss

I Favourable game

I p = 0.4, we get paid 3 times the bet amount. (ev = 1.2).

I Assume a “long run” of approximately similar games

How much of our capital is this risky opportunity worth?

bh = 0.25 bk = 0.1 bs = 0.05 (1)



Optimal Strategy
Kelly Criterion
b? = edge

odds = 0.4·(3−1)−0.6
(3−1) = 0.1
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I Kelly Criterion is the upper bound of value for each opportunity.

I Betting more → bankruptcy.

I Betting less → sub-optimal growth.



Optimal Strategy

General Case

I K probabilistic outcomes p1, p2, ..., pK .

I n opportunities, (assets), n − 1 risky, 1 risk-less. a1, a2, ..., c .

p =
[
p1 p2 ... pK

]
ai =


r1,i
r2,i
...

rK ,i

 c =


1
1
...
1

 (2)

Cash asset can have a different payoff if money can be risk-free invested
elsewhere. (e.g. bank account interest rate)

R =
[
a1 a2 ... an−1 c

]
b =


b1

b2

...
bn−1

bc

 (3)



Example
Assume horse race with 16 running horses. Bet type quinella denoted
QNL(i , j) pays off if pair of horses (i , j) win the race. Order does not
matter. There are hence 120 different pairs, 121 different assets including
cash asset and 120 probabilities in the vector p. oi,j denotes posted odds
for given QNL(i , j).

R =


o1,1 0 0 ... 1

0 o1,2 0 ... 1
0 0 o1,3 ... 1
... ... ... ... 1

 (4)

This is a bet on an exclusive outcome, hence R matrix is almost
completely made up of zeros and odds diagonally.

p =
[
p1,1, p1,2, ..., p15,16

]
(5)

b =
[
b1,1, b1,2, ..., bc

]
(6)



Optimal Strategy

General Case

maximize
b

E[log(R · b)]

subject to
K∑
i=1

bi = 1.0, bi ≥ 0

The problem is similar to the fractional Knapsack problem formulation.

I Instead of diamonds and smaragds, risky opportunities are “put in
the bag”.

I Probabilistic outcomes with log(payoff )



Optimal Strategy

Economist’s View
MPT states that portfolio b1 is superior to b2 if the expected gain E[b] is
at least as great.

E[b1] ≥ E[b2] (7)

and the risk, here general risk measure denoted r is no greater.

r(b1) ≤ r(b2) (8)

Simpler risk measures include the following:

Var [b] (9)

σ(b) =
√

Var [b] (10)

CV (b) =
σ(b)

E[b]
(11)



Optimal Strategy

Modern Portfolio Theory

maximize
b

µTb − γbTΣb

subject to
K∑
i=1

bi = 1.0, bi ≥ 0

where b is fraction vector, γ is risk aversion parameter and µ is the
expected values vector of offered opportunities. In layman terms we
maximize the following:

return − γ · risk (12)

In the most general set up risk is defined as variance Σ.



Optimal Strategy

Review
I Kelly is the growth optimal wealth allocation strategy if the

following assumptions are met.

1. True probability is known to the player.
2. Approximately similar choice is to be made infinitely many times.

I There is closed form solution for exclusive games.

I No closed form for a general case.

I Solvable by SCS(Splitting Conic Solver)...

I Economists view the problem differently(Max return Min risk)



Uncertainty
I We do not know the true probability. → Neither does bookmaker.

Game Scenario

(PR ,PB ,PM) (13)

PR 
[p1,...,pK]

PB 
[p1,..., pK]

PM 
[p1,...,pK]

D(PR, PB)

D(PR, PM)

I PR Real probability.

I PB Bookie’s estimate.

I PM Model’s estimate of the real probability.

I D(P,Q) Kullback–Leibler divergence.

DKL(P||Q) =
n∑

i=0

pi log
pi

qi
(14)



Uncertainty

Information is Money (Kelly / Shannon)

I AKL = D(PR ||PB)− D(PR ||PM) CGR = AKL
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Uncertainty

Drawdown

I Half-Kelly approach uses fixed fraction. (Too static).

I Dynamic approach is to add a drawdown constraint.

P(W MIN < 0.7) ≤ 0.1 (15)

Probability of our wealth falling below 0.7 is p ≤ 0.1, in general:

P(W MIN < α) ≤ β (16)

The drawdown constraint is approximately satisfied if the following is
satisfied, Busseti et al., 2016.

E[(R · b)−λ] ≤ 1 (17)

Where

λ =
log(β)

log(α)
(18)



Uncertainty

Risk Constrained Kelly

maximize
b

K∑
i=1

pi · log(Ri · b)

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

log(
K∑
i=1

exp[log(pi )− λ log(Ri · b)]) ≤ 0

where λ = log(β)
log(α) for some α, β ∈ (0, 1)

Result
Portfolio satisfies P(W MIN < α) ≤ β and is as “growth optimal” as
possible.



Uncertainty

Distributionally robust optimization
Paradigm for decision making under uncertainty where:

I The uncertain problem data are governed by a probability
distribution that is itself subject to uncertainty.

I The distribution is then assumed to belong to an ambiguity set
comprising all distributions that are compatible with the decision
maker’s prior information.

Multiple different kinds of distribution sets for Kelly gambling.

I Ellipsoidal distribution set

I Polyhedral

I Divergence based(KL div)

I Wasserstein distance

Idea: Look at the worst case growth rate possible given the uncertainty.



Combinatorial Explosion

I 30 games → K = 330 outcomes. R → Combinatorial explosion

I Logarithms in objective function and constraints → numerically
difficult.

Quadratic Kelly

1. Taylor expansion of both the objective f , drawdown constraint.

2. Take first two terms.

ρ is the matrix of excess return. ρ = R − 1

maximize
b

E[ρ · b]− 1

2
E[(ρ · b)2]

subject to
K∑
i=1

bi = 1.0 bi ≥ 0

λ(λ+ 1)
(ρ · b)2

2
≤ λ(ρ · b) λ =

log(β)

log(α)



Combinatorial Explosion

Outcomes ≤ 4

I Idea: Choose only a single asset per game, ignore all the others.

I Idea 2: Choose according to sharpe ratio. reward/risk .

Max Sharpe Ratio

maximize
b

µb√
bTΣb

subject to
K∑
i=1

bi = 1.0

bi ≥ 0

where Σ is a covariance matrix. µ is a row vector of excess returns.



Open questions

What about machine learning?

I Hyperparameter optimization
I Simulations/validations are costly
I Smarter parameter space exploration
I Bayesian optimization methods
I SMBO based on Gaussian Process

I Reinforcement learning?
I Existing literature over simplifies the problem
I Rarely good results
I Often highest expectation bets strategy only etc.

I Bayesian policies
I Games are often not approximately similar
I A lot can be learned about the distribution of dividends.



Experiments
Horse Racing

I Korea → Seoul racetrack dataset

K odds margin AKL/log(K )
∈ [6, 16] ∈ [1.0, 931.3] ≈ 0.2 0.0057
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Experiments
Horse Racing
Kelly more reasonable when constrained → P(W MIN < 0.4) ≤ 0.1.
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Experiments

Basketball

K odds margin AKL/log(K )
2 ∈ [1.01, 41.] ≈ 0.04 −0.0146

I KL disadvantage → Kelly is not the optimal strategy.

I We assume 10-game rounds. Kround = 210

I Train and Test datasets always randomly shuffled, some randomly
removed.

The risk constraint and fractional parameters are selected according to.

maximize median(WF )

subject to Q5 > 0.95

I Maximal median final wealth WF

I The 5th percentile, value below which 5% of all the wealth positions
may be found is greater than 0.95.



Experiments
Basketball
Fractional MaxSharpe
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1000 MSharpe trajectories across the testing and training datasets.



Experiments
Basketball
Quadratic Kelly, risk constrained.
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Experiments

Football

K odds margin AKLO
/log(K ) AKLC

/log(K )
3 ∈ [1.03, 66] 0.03 −0.012 −0.016

I KL disadvantage → Kelly not optimal.

I AKLO
> AKLC

→ Opening odds more advantageous.

I We assume 10-game rounds. K = 310 → Select 2 → K = 210

I Train and Test datasets always randomly shuffled.

I Some games always randomly removed.

I The same criterion for parameters as basketball.



Experiments

Football Reinvestment
Fractional MaxSharpe
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Experiments

Football Reinvestment
Quadratic Kelly risk constrained
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Review

Findings

1. Kelly growth optimal under specific assumptions.

2. KL advantage directly connected to exponential growth rate.

3. Linear growth no such connection

4. Kelly numerically difficult

5. MPT is quadratic approximation of Kelly (scales badly for more
difficult problems)

6. Under specific conditions it pays to bet negative EV

7. ...

Open questions

1. General advantage function?

2. How to apply ML?
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