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Motivation & Challenges
Motivation

• exploiting betting markets
• performance optimization

Challenges

• no available datasets
• difficulties with establishing the state-of-the-art
• the best models are not published
• gap between science and practice
• citation graph not connected
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Sports

• individual vs team
• most of the popular sports are team sports
• more detailed statistics are gathered in team sports
• team sports events are more common
• team sports provide more betting opportunities
• individual sports suffer more from performance variance

=⇒ team sports are more suitable for applying ML
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Task Characteristics

• the actual results are stochastic in nature
• we are usually interested in probabilities of the outcomes
• it looks like there is a glass ceiling about 75 % accuracy
• lot of space for feature engineering
• the features are more important than the selected ML algorithm
• relational character of the data
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Types of Data
• results

+ always available
− not enough information

• box-score statistics
+ usually available
− information aggregated without context, not always objective

• play-by-play data
+ provide better context
− rarely available

• player-tracking-data
+ almost complete description of the game
− not available for free, only for top leagues
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Bradley-Terry model [1]

• probability, that team i beats team j is given by
P(Ti � Tj|πi, πj) =

eπi−πj

1+ eπi−πj

• the team’s strength πi is given by
πi =

∑︁
k

βk(xik − xjk) + U
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Elo Rating[4]

• player’s skill conforms to normal dist. with fixed variance β2
• outcome is a function of the two players’ skill ratings s1 and s2

P(p1 > p2|s1, s2) = (
s1 − s2
p2β )

•  denotes the cumulative density ofN (0, 1)
• after the game, the skill ratings s1 and s2 are updated such thatthe observed game outcome becomes more likely

6/22



Elo in practice
• Let ri represent the initial Elo rating of player i
• Ri = 10 ri400

• expectation of game outcome Ei = Ri
Ri+Rj

• new rating r′i = ri + K · (Si − Ei)

Si =

⎧⎪⎪⎨⎪⎪⎩
1, if player i won
0.5, if player i tied
0, if player i lost

− does not differentiate white/black pieces („home/away“)
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Glicko-2 rating[6]

• implemented on chess servers, Counter Strike: GO, ...
• each player has rating r and a rating deviation RD
• Glicko-2 introduces rating volatility σ
• volatility: degree of expected fluctuation in a player’s rating
• RD increases with time since last game (affected by σ)
• 10-15 games long burn in period
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TrueSkillTM[7]

• developed by Microsoft, presented at NIPS
• builds on Glicko
• can asses individual skills from team results
• applicable for games with multiple teams
• applies Bayes rule

p(s|r,A) =
P(r|s,A)p(s)

P(r|A)

• posterior distr. is approximated and used as prior for next game
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Pi-ratings[3]
• state-of-the-art ranking system for soccer
• separate rating for home/away matches
• updating home team’s home rating:

R′
αH = RαH + ψH(e) × λ

• updating home team’s away rating:
R′
αA = RαA + (R′αH − RαH) × γ

• large wins are diminished
ψ(e) = c× log 10(1+ e)
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Utilizing Boxscores

• the main challenge is how to aggregate the information
• calculation seasonal averages or sliding averages is common
• few features allows sampling multivariate distribution
• most of the papers consist of applying off-the-shelf learners
• ANNs and SVMs generally perform best
• opportunities for RNN and CNN
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Modeling basketball play-by-play data[8]

• game as a Markov process {Xi, i ∈ N} with state space φ
• state vector < Evt,Qtr, Time.PtsDiff, a, h >

• simulations generated using a random walk over state space
• transition probabilities conditional on a game context
• particularly useful for in-play betting
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Common metrics
Brier score[2]

BS =
1
N

N∑︁
i=1

R∑︁
j=1
(pij − oij)2

− does not consider the outcomes to be ordinal
Ranked probability score[5]

RPS =
1

R− 1
R∑︁
i=1

i∑︁
j=1
(pj − oj)2

+ does consider the outcomes to be ordinal
− does consider the outcomes to be ordinal
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Ordinality of outcomes
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Exploting betting markets using ML

• focus on profiting from betting market
• core idea: accuracy 6≈ profit
• from gathering the data to evaluating betting strategies
• application of ANNs
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Aggregating player-level statistics using convolution

• player-level statistics provide more information
• concatenating player statistics leads to large feature vector
• default team-level stats provide sum/average of players’ stats
• convolution allows learning the aggregation function
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Soccer Prediction Challenge

• over 200 000 matches from leagues all around the world
• RPS as evaluation metric
• data: League, Season, Date, Home/Away, Home/Away Score
• lot of feature engineering
• gradient boosted trees (xgboost)
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Ranking teams using PageRank

• PageRank was originally used for ranking websites
• simulates a random surfer
• our use case: each league can be represented as a graph
• teams→ vertices, matches→matches
• weight of the edge equals to number of expected points
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Future work

• March Machine Learning Mania @kaggle
• utilize other types of data (play-by-play, pesstatsdatabase, ...)
• Dota 2 drafter
• RNNs/CNNs
• ideas from recommender systems, graph algorithms, ...
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