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Ensemble Methods

» Combine the predictions of several base estimators in order to
improve generalization and robustness

» Bagging or averaging methods build several estimators
independently and average their predictions. Ex: Random
Forests

» Boosting methods build estimators sequentially. Combining
several weak estimators to produce an ensemble. Ex:
AdaBoost, Gradient Tree Boosting, etc

Bagging methods reduce the variance (on average).
Boosting methods try to reduce the bias.



Gradient Boosting

High level idea

» Fit an additive model (ensemble) in a forward stage-wise
manner.

» In each stage, introduce a weak learner to compensate the
shortcomings of existing weak learners.

> "shortcomings” are identified by gradients.

» Gradients tell us how to improve the model.



A simple Boosting algorithm

Dataset: D = {(x1,y1), (x2, ¥2)...(Xn, ¥n) }
Task: Fit a model F(X) to minimize square loss L = (Y — F(X))?

. Initialize Fo(X) = & > i
.form=1to M:
let rm—1 =Y — Fp_1(X) be the residual vector

Update Fpn(X) = Fn_1(X) + hm(X)

1
2
3
4, train a regression tree hpy,(X) on rm_1
5
6. end
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Figure 1: Intuition behind Gradient Boosting (From explained.ai)



Example

Simple Boosting demo



What about the Gradient part?

MSE Loss Function
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» It turns out that when using the square loss, the residual is
equal to the negative gradient

> In essence, when we update F we use the negative gradient

» Gradient descent on F (not on the model parameters)



Final Formulation

Additive model of the form:

F(X) = Z'Ymhm(x)

where the new tree h,, tries to minimize the loss L

hm = argminz L(yi, Fm—1(xi) + hm-1(xi))
and the update rule is:

Fm(X) = Fm—l(X) - VmZVFL(}/i, Fm—l(Xi)))
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Loss Functions (regression)

v

Changing from residuals to gradients allows us to change the
loss functions

v

Square loss is mostly used but it emphasizes the outliers.

v

Absolute loss and Huber loss are also used when robustness to
outliers is required.

v

Other options are Least Absolute Deviation and Quantile.



Challenges

Models can overfit

v

v

Regularization is achieved using shrinkage or subsampling

v

Shrinkage is reducing the impact of each added learner.

v

Subsampling is a combination of boosting and bagging.



Shortcomings

» Scalability
» What if the data do not fit in the memory?

» Can it be used in more than one CPUs or machines?



XGBoost (Chen & Guestrin, 2016)

v

Scalable gradient boosting trees

v

Very popular algorithm in ML competitions

v

It can be used for regression, ranking and classification

v

Parallel, Distributed computing and Out of core computing

Cache aware access

v



Algorithmic improvements

Tree building

How to find the best split points?
How to choose the feature to split?

Approximate algorithm

Most algorithms use an exact greedy approach that requires
sorting.

XGBoost proposes candidate splitting points according to
percentiles of feature distribution.

Sparsity Aware split finding



Parameter Tuning

» General parameters (number of threads)

» Boosting parameters (stepsize, regularization, tree parameters,
etc)

» Task parameters (objective, evaluation metric)



LightGBM (Ke et al., 2017)

v

Open source algorithm developed by Microsoft

» Gains in popularity and has won ML competitions

v

Speed and Memory Usage optimizations

v

Sparsity Optimization

» Accuracy optimizations

v

Parallel Learning (feature, data and voting parallelization)



Algorithmic improvements

Gradient-based One-Side Sampling

Exclude a significant proportion of data instances with small
gradients, and only use the rest to estimate the information gain.

Exclusive Feature Bundling

Bundle mutually exclusive features (i.e., they rarely take nonzero
values simultaneously), to reduce the number of features without
hurting the accuracy.



System improvements

» Data, Feature and Voting parallelization
» Network communication

» GPU support



Parameter Tuning

» Learning Controls (tree related parameters, bagging
regularization)

» 10 (verbosity, outputs, binarization)

» Objectives

» Metrics

» Network (num_machines, connectivity, etc)

» GPU



Demo time

Testing XGBoost, LightGBM and Random Forests in a security
dataset.



Ember dataset (Anderson & Roth, 2018)

v

A collection of pre-processed Windows binary files

v

Features extracted from 1.1M binaries from 2017

v

900K training samples (300K malicious, 300K benign, 300K
unlabeled)

v

200K test samples (100K malicious, 100K benign)



Features

v

File information: size, imported and exported functions

v

Raw bytes histograms, Byte entropy histograms

Header information

v

v

Strings, etc

v

2351 model features



Results |

> Using a subset of the data: 150K training samples and 50K
test samples.

» Training set was 1/3 malicious, 2/3 benign.

Algorithm | AUC | FPR | FNR | Training (sec) | Prediction (sec)

XGBoost | 0.944 | 0.037 | 0.07 136 1.62
LightGBM | 0.966 | 0.019 | 0.05 75 0.87
RF 0.959 | 0.010 | 0.07 272 1.43

Table 1: Results on smaller dataset



Results ||

» Same settings as before, only with the full dataset: 600K
training samples, 200K test samples.

» Balanced dataset.

Algorithm | AUC | FPR | FNR | Training (sec) | Prediction (sec)
LightGBM | 0.986 | 0.011 | 0.01 283 3.43
RF 0.989 | 0.011 | 0.01 2258 8.67

Table 2: Results on the full dataset



Conclusions

» LightGBM perfomed surprising well with no tuning
» XGBoost required some setting even with the smaller dataset

» Random Forests performed really well but the training time
required was significantly longer.

» The above do NOT mean that XGBoost is a worse library!

» Both Gradient Boosting libraries have a large number of
parameters.



Links

https://explained.ai/gradient-boosting/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/

http://arogozhnikov.github.io/2016/06/24/gradient_
boosting_explained.html


https://explained.ai/gradient-boosting/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
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