# **Gradient Boosting Trees**

Maria Rigaki

30-11-2018

#### **Ensemble Methods**

- ► Combine the predictions of several base estimators in order to improve generalization and robustness
- Bagging or averaging methods build several estimators independently and average their predictions. Ex: Random Forests
- ▶ Boosting methods build estimators sequentially. Combining several weak estimators to produce an ensemble. Ex: AdaBoost, Gradient Tree Boosting, etc

**Bagging** methods reduce the variance (on average). **Boosting** methods try to reduce the bias.

## **Gradient Boosting**

#### High level idea

- ► Fit an additive model (ensemble) in a forward stage-wise manner.
- In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- "shortcomings" are identified by gradients.
- Gradients tell us how to improve the model.

# A simple Boosting algorithm

Dataset:  $D = \{(x_1, y_1), (x_2, y_2)...(x_n, y_n)\}$ Task: Fit a model F(X) to minimize square loss  $L = (Y - F(X))^2$ 

- 1. Initialize  $F_0(X) = \frac{1}{N} \sum y_i$
- 2. **for** m = 1 to M:
- 3. let  $r_{m-1} = Y F_{m-1}(X)$  be the residual vector
- 4. train a regression tree  $h_m(X)$  on  $r_{m-1}$
- 5. Update  $F_m(X) = F_{m-1}(X) + h_m(X)$
- 6. end

### Illustration



Figure 1: Intuition behind Gradient Boosting (From explained.ai)

# Example

Simple Boosting demo

### What about the Gradient part?



- ▶ It turns out that when using the square loss, the residual is equal to the negative gradient
- $\blacktriangleright$  In essence, when we update F we use the negative gradient
- Gradient descent on F (not on the model parameters)

### Final Formulation

Additive model of the form:

$$F(X) = \sum_{m} \gamma_{m} h_{m}(X)$$

where the new tree  $h_m$  tries to minimize the loss L

$$h_m = argmin \sum_i L(y_i, F_{m-1}(x_i) + h_{m-1}(x_i))$$

and the update rule is:

$$F_m(X) = F_{m-1}(X) - \gamma_m \sum_{i} \nabla_F L(y_i, F_{m-1}(x_i)))$$

## Loss Functions (regression)

- Changing from residuals to gradients allows us to change the loss functions
- Square loss is mostly used but it emphasizes the outliers.
- Absolute loss and Huber loss are also used when robustness to outliers is required.
- Other options are Least Absolute Deviation and Quantile.

### Challenges

- Models can overfit
- Regularization is achieved using shrinkage or subsampling
- ▶ **Shrinkage** is reducing the impact of each added learner.
- Subsampling is a combination of boosting and bagging.

### **Shortcomings**

- Scalability
- ▶ What if the data do not fit in the memory?
- ▶ Can it be used in more than one CPUs or machines?

# XGBoost (Chen & Guestrin, 2016)

- Scalable gradient boosting trees
- Very popular algorithm in ML competitions
- ▶ It can be used for regression, ranking and classification
- Parallel, Distributed computing and Out of core computing
- Cache aware access

### Algorithmic improvements

### Tree building

How to find the best split points? How to choose the feature to split?

### Approximate algorithm

Most algorithms use an *exact greedy* approach that requires sorting.

XGBoost proposes candidate splitting points according to percentiles of feature distribution.

### Sparsity Aware split finding

### Parameter Tuning

- General parameters (number of threads)
- Boosting parameters (stepsize, regularization, tree parameters, etc)
- Task parameters (objective, evaluation metric)

# LightGBM (Ke et al., 2017)

- ▶ Open source algorithm developed by Microsoft
- Gains in popularity and has won ML competitions
- Speed and Memory Usage optimizations
- Sparsity Optimization
- Accuracy optimizations
- Parallel Learning (feature, data and voting parallelization)

### Algorithmic improvements

### Gradient-based One-Side Sampling

Exclude a significant proportion of data instances with small gradients, and only use the rest to estimate the information gain.

### **Exclusive Feature Bundling**

Bundle mutually exclusive features (i.e., they rarely take nonzero values simultaneously), to reduce the number of features without hurting the accuracy.

# System improvements

- Data, Feature and Voting parallelization
- Network communication
- ► GPU support

### Parameter Tuning

- Learning Controls (tree related parameters, bagging regularization)
- ▶ IO (verbosity, outputs, binarization)
- Objectives
- Metrics
- Network (num\_machines, connectivity, etc)
- ► GPU

#### Demo time

Testing XGBoost, LightGBM and Random Forests in a security dataset.

# Ember dataset (Anderson & Roth, 2018)

- ► A collection of pre-processed Windows binary files
- Features extracted from 1.1M binaries from 2017
- 900K training samples (300K malicious, 300K benign, 300K unlabeled)
- ▶ 200K test samples (100K malicious, 100K benign)

#### **Features**

- ► File information: size, imported and exported functions
- Raw bytes histograms, Byte entropy histograms
- Header information
- ► Strings, etc
- 2351 model features

### Results I

- Using a subset of the data: 150K training samples and 50K test samples.
- ► Training set was 1/3 malicious, 2/3 benign.

| Algorithm | AUC   | FPR   | FNR  | Training (sec) | Prediction (sec) |
|-----------|-------|-------|------|----------------|------------------|
| XGBoost   | 0.944 | 0.037 | 0.07 | 136            | 1.62             |
| LightGBM  | 0.966 | 0.019 | 0.05 | 75             | 0.87             |
| RF        | 0.959 | 0.010 | 0.07 | 272            | 1.43             |

Table 1: Results on smaller dataset

### Results II

- ► Same settings as before, only with the full dataset: 600K training samples, 200K test samples.
- Balanced dataset.

| Algorithm | AUC   | FPR   | FNR  | Training (sec) | Prediction (sec) |
|-----------|-------|-------|------|----------------|------------------|
| LightGBM  | 0.986 | 0.011 | 0.01 | 283            | 3.43             |
| RF        | 0.989 | 0.011 | 0.01 | 2258           | 8.67             |

Table 2: Results on the full dataset

#### Conclusions

- LightGBM perfomed surprising well with no tuning
- XGBoost required some setting even with the smaller dataset
- Random Forests performed really well but the training time required was significantly longer.
- ▶ The above do NOT mean that XGBoost is a worse library!
- Both Gradient Boosting libraries have a large number of parameters.

#### Links

```
https://explained.ai/gradient-boosting/index.html
https://lightgbm.readthedocs.io/en/latest/index.html
https://xgboost.readthedocs.io/en/latest/
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
```

### References I

Anderson, H.S. and Roth, P., 2018. EMBER: An Open Dataset for Training Static PE Malware Machine Learning Models. arXiv preprint arXiv:1804.04637.

Chen, T. and Guestrin, C., 2016, August. *Xgboost: A scalable tree boosting system.* In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM.

Friedman, J.H., 2001. *Greedy function approximation: a gradient boosting machine.* Annals of statistics, pp.1189-1232.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.Y., 2017. *Lightgbm: A highly efficient gradient boosting decision tree.* In Advances in Neural Information Processing Systems (pp. 3146-3154).