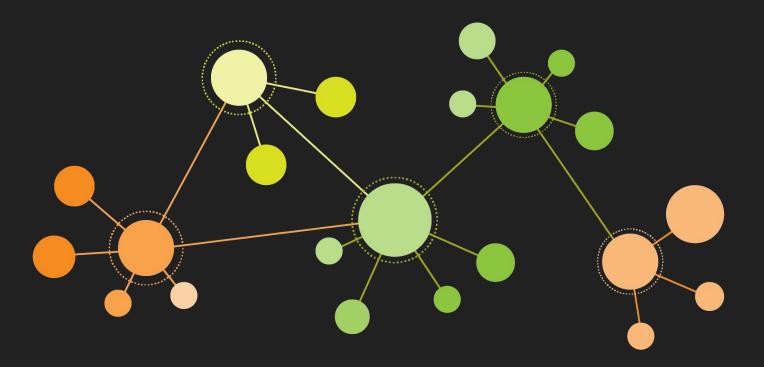
Graph Neural Networks

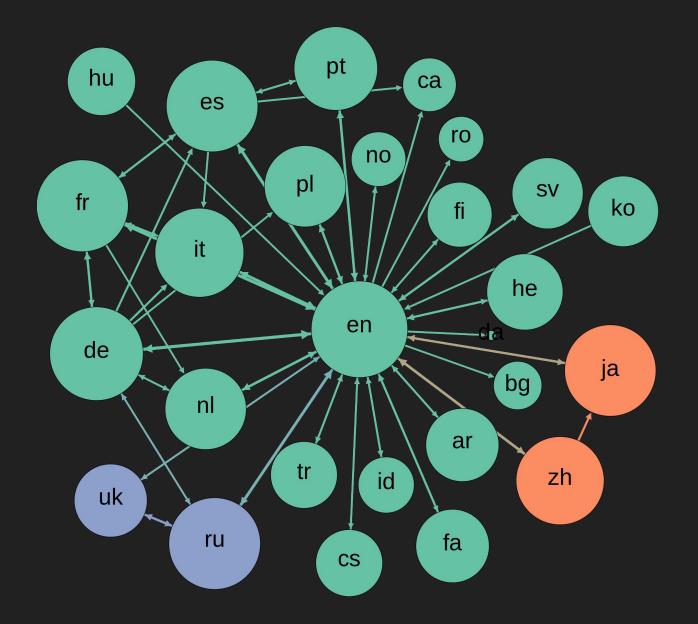
And how they changed the landscape of graph processing

Peter Jung

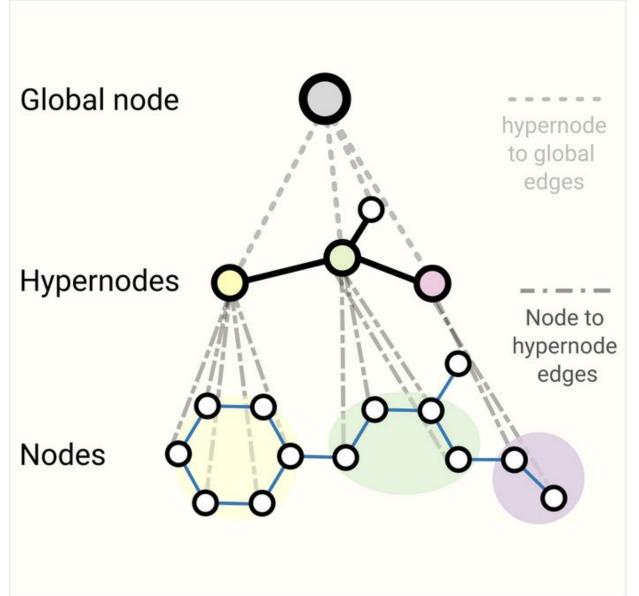


Introduction

The Graph



Multigraph Edge types



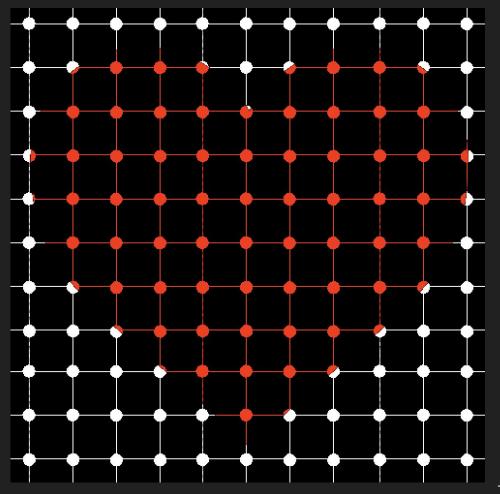
Generalized Graph Environment

Environment, feature_vector: [...] Edge Node Node feature vector: [...] feature_vector [0.1, 0.3, ...] feature_vector [0.1, 0.3, ...] Node feature_vector [0.02, 0.1, ...]

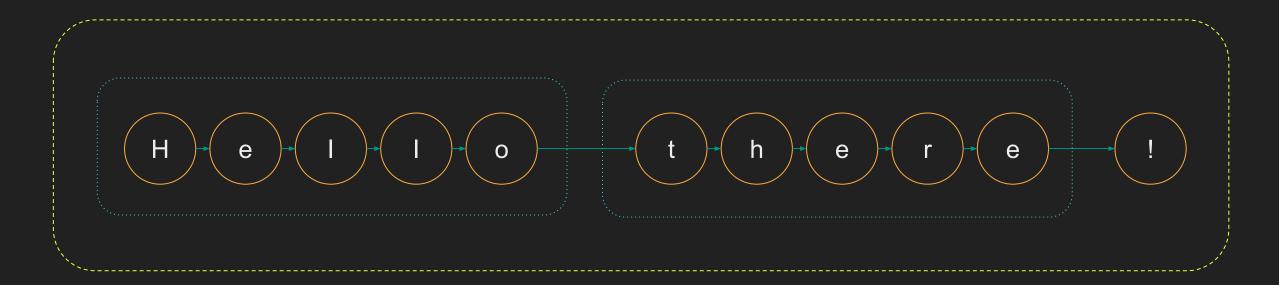
Strict Types of Graphs

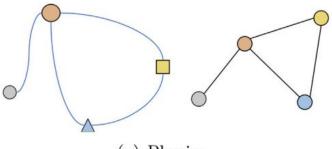
- A lot of things can be generalized to a graph
- Usually we work with strict types
 - Grid
 - Sequential and directed
 - --> Structure information is built into the models itself

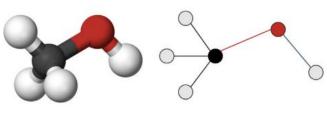
Images are just special kind of graphs



Texts are special kind of graphs

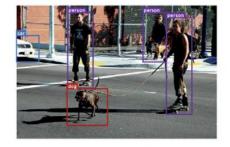


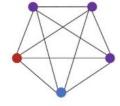


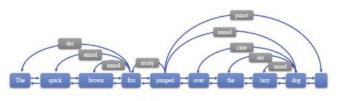


(a) Physics

(b) Molecule

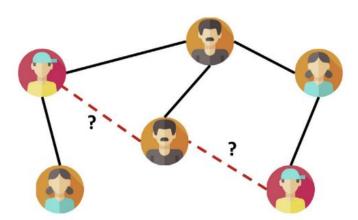






(c) Image

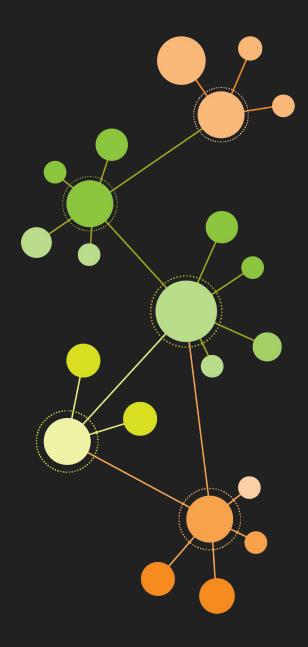
(d) Text



(e) Social Network

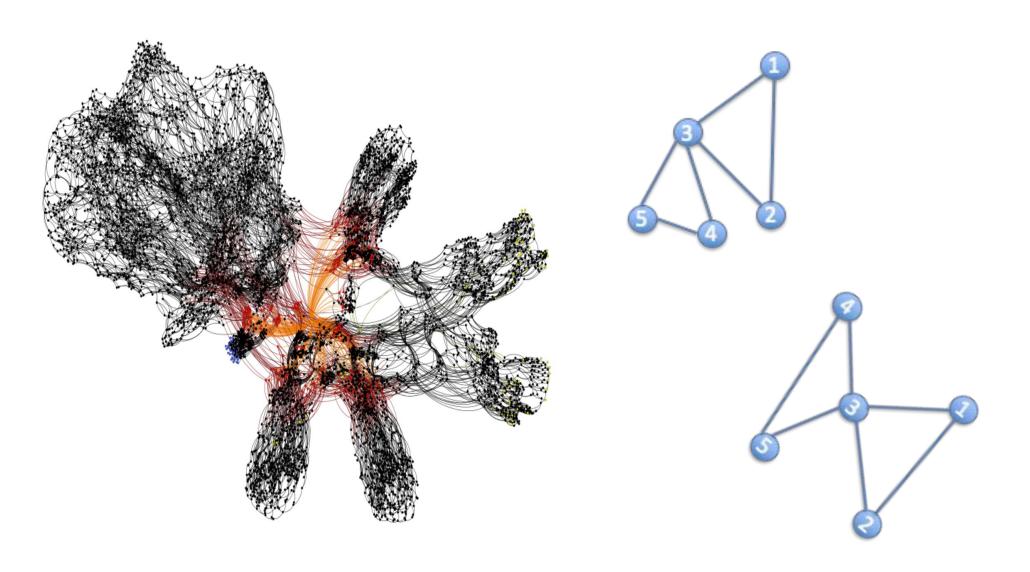
About Graph Neural Networks

- NLP / CV takes these structures as granted
- Encodes **arbitrary** relationships and interactions into the data
- Types:
 - Graph (Spatial, Spectral) Convolutional Network
 - Graph Attention Network
 - Gated Graph Neural Network
 - Recurrent Graph Neural Network
 - Generative Graph Neural Networks
 - ...

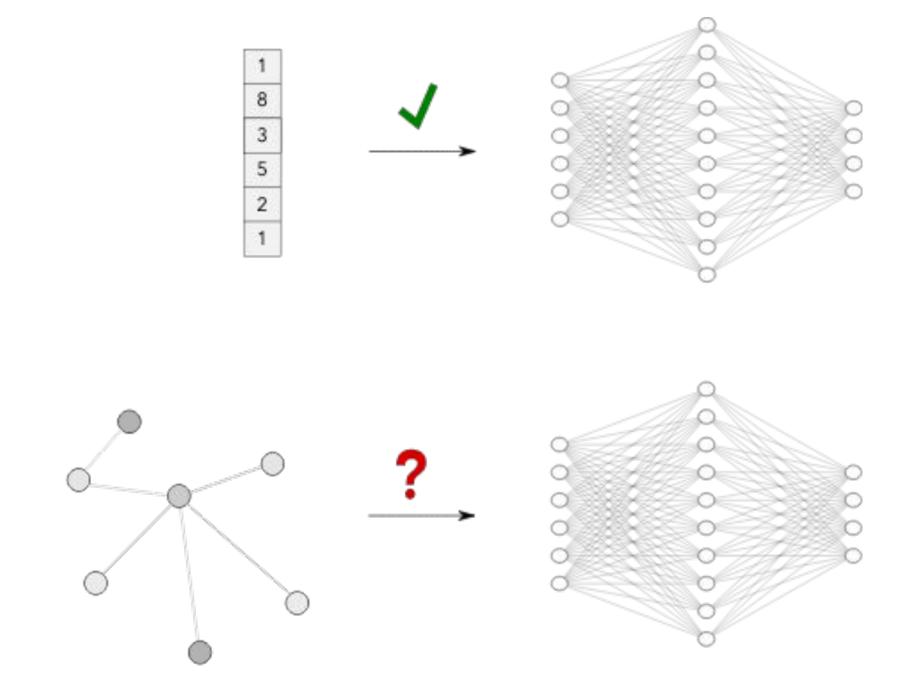


Challenges

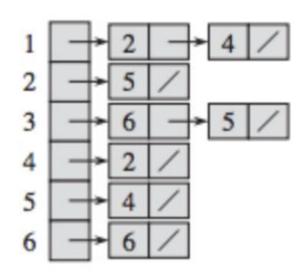
Hard to visualize in human-labable form



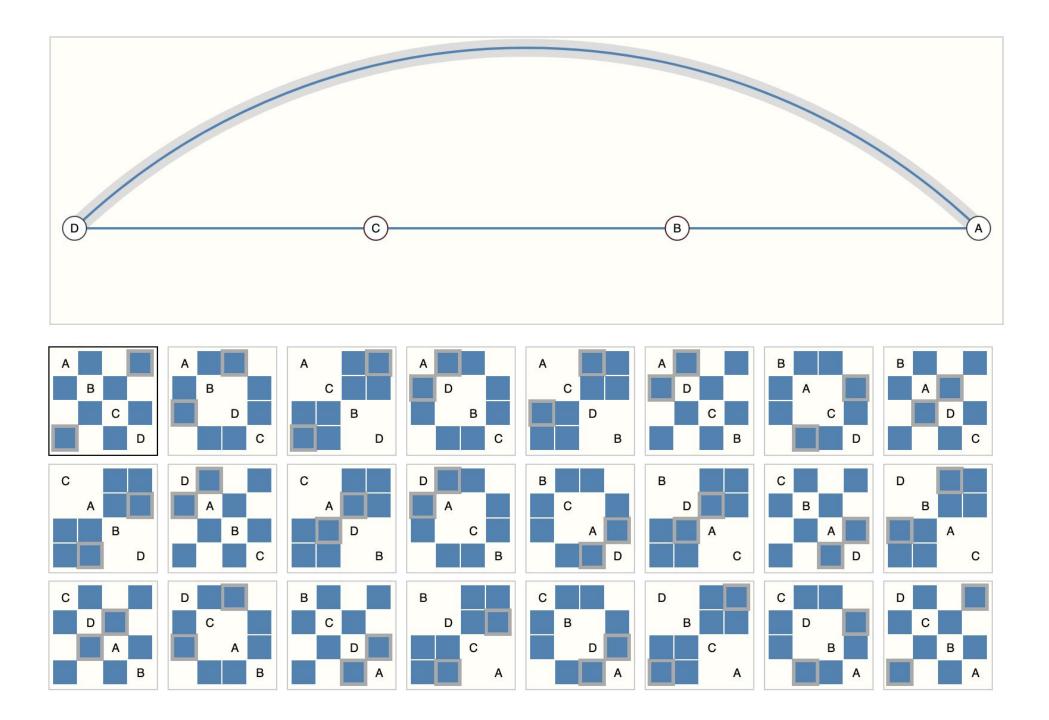
data	> IMDB-BINARY
1	20 20 73
2	1 2
3	1 3
4	1 4
5	1 5
6	1 6
7	7 2
8	7 8
9	7 9
10	7 10
11	7 11
12	7 12
13	7 13
14	7 14
15	2 15
16	2 3
17	2 4
18	2 8
19	2 16
20	2 9
21	2 5
22	2 6
23	2 17



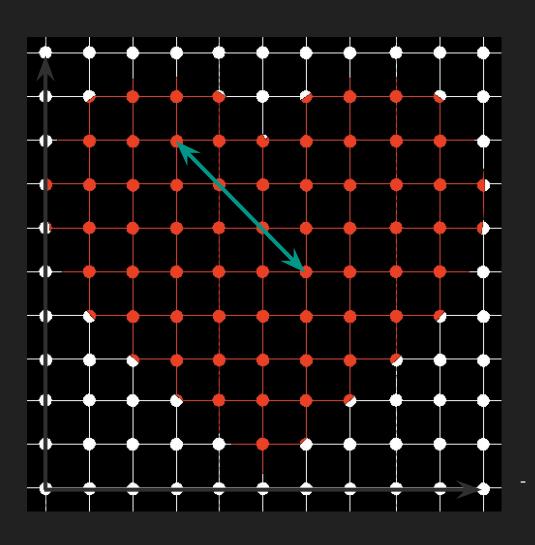
Various possible representations

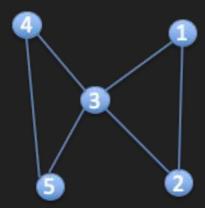


	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1



Does not exist in euclidean space and / or with fixed form

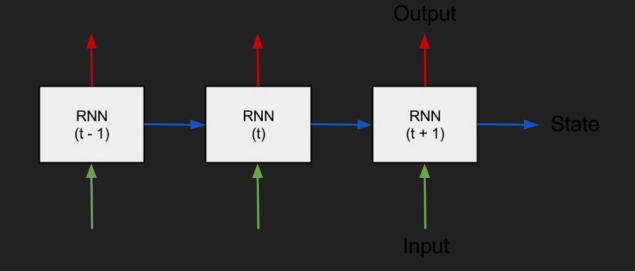




Basic operations like convolution that are taken for granted in the Euclidean case are not well defined

Why not just standard NNs?

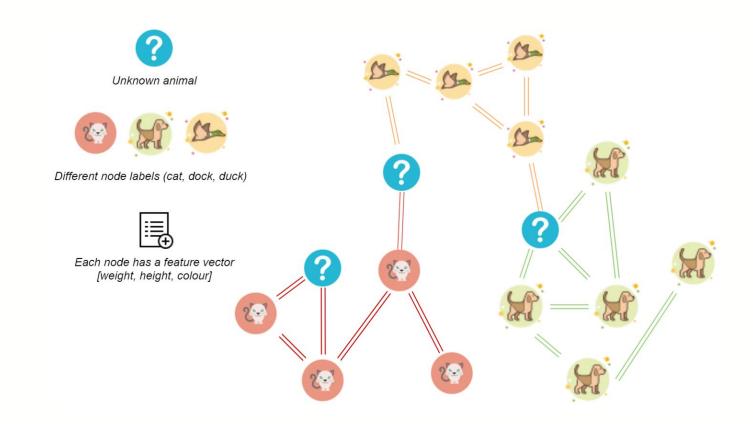
- Variable inputs
- Isomorphic graphs
- CNN or RNN stack features in some specific order
 - We should traverse in all possible orderings
 - Computationally expensive
 - Convolution on adj. matrix does not capture neighbors
- Output of the GNN should be invariant for the input order of nodes



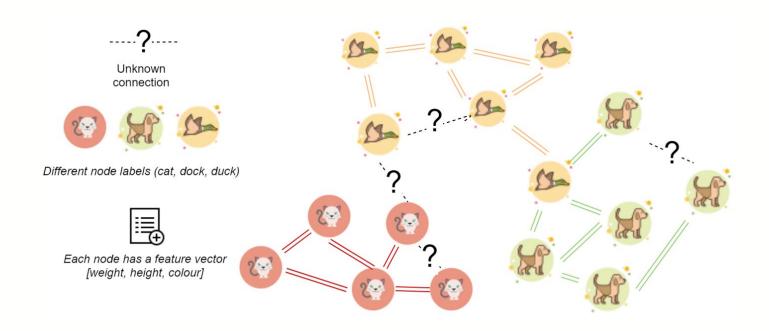
Tasks

Node classification

- Citation networks
- R/TW/FB/IG posts
- Friends relationships
- Link prediction
 - Recommendation system
- Graph classification
 - Classify whole graph
- Community detection
- Graph Completion/Generation

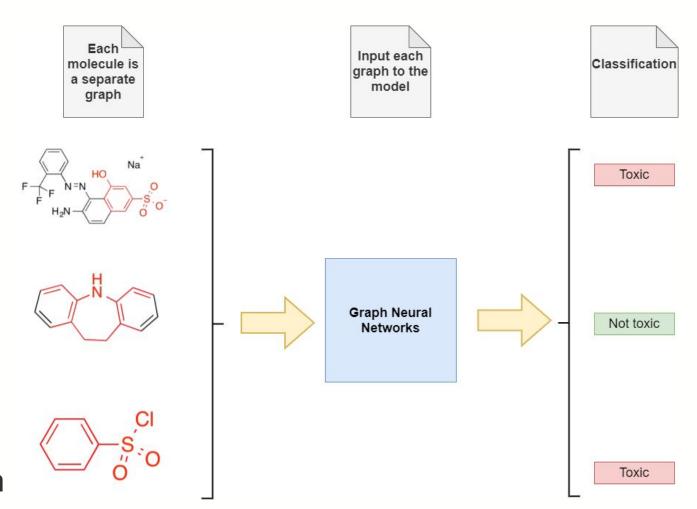


- Node classification
 - Citation networks
 - R/TW/FB/IG posts
 - Friends relationships
- Link prediction
 - Recommendation system
- Graph classification
 - Classify whole graph
- Community detection
- Graph Completion/Generation

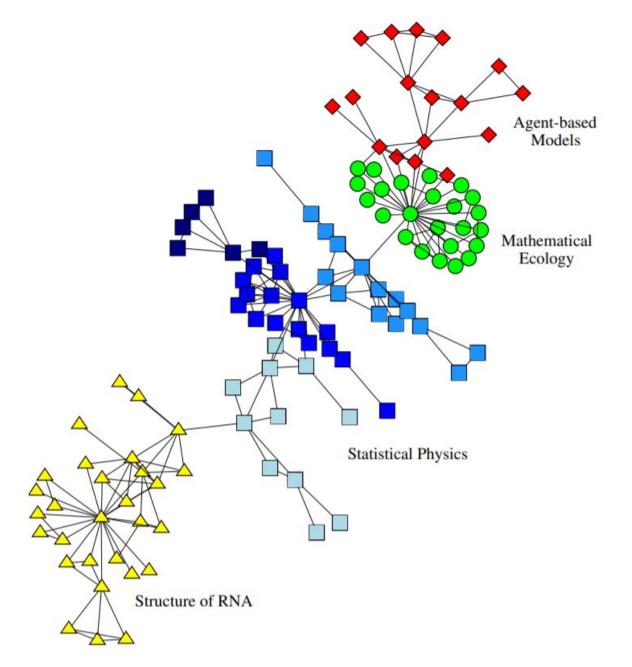


Node classification

- Citation networks
- R/TW/FB/IG posts
- Friends relationships
- Link prediction
 - Recommendation system
- Graph classification
 - Classify whole graph
- Community detection
- Graph Completion/Generation



- Node classification
 - Citation networks
 - R/TW/FB/IG posts
 - Friends relationships
- Link prediction
 - Recommendation system
- Graph classification
 - Classify whole graph
- Community detection
- Graph Completion/Generation



Node classification

- Citation networks
- R / TW / FB / IG posts
- Friends relationships
- Link prediction
 - Recommendation system
- Graph classification
 - Classify whole graph
- Community detection
- Graph Learning
 - Completion, Generation, Mining, Matching, ...



Usage scenarios

- Structural

- Explicit relational structure
- Knowledge graphs, phys. systems, ...
- Social network prediction,
 recommender systems, traffic
 prediction, ...

Non-structural

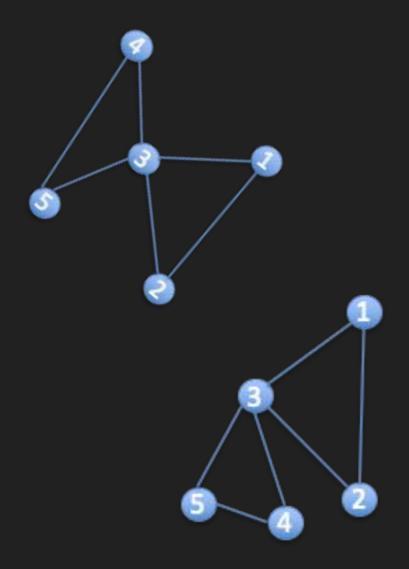
- Not explicit, yet existing structure
- Text, images, ...
- Two approaches
 - 1. Incorporate structural information from other domains to improve the performance
 - 2. Infer or assume the relational structure in the scenario

Table 3 Applications of graph neural network

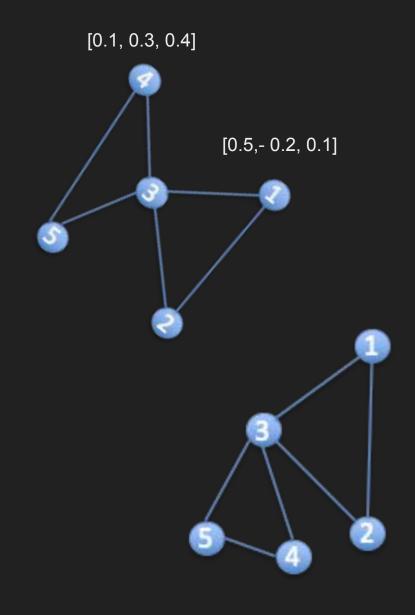
Area	Application	References			
Graph Mining Graph Matching Graph Clustering		(Riba et al., 2018; Li et al., 2019b) (Zhang et al., 2019c; Ying et al., 2018b; Tsitsulin et al., 2020)			
Physics	Physical Systems Modeling	(Battaglia et al., 2016; Sukhbaatar Ferguset al., 2016; Watters et al., 2017; Hoshen, 2017; Kipf et al., 2018; Sanche 2018)			
Chemistry	Molecular Fingerprints Chemical Reaction Prediction	(Duvenaud et al., 2015; Kearnes et al., 2016) Do et al. (2019)			
Biology	Protein Interface Prediction Side Effects Prediction Disease Classification	Fout et al. (2017) Zitnik et al. (2018) Rhee et al. (2018)			
Knowledge Graph KB Completion KG Alignment		(Hamaguchi et al., 2017; Schlichtkrull et al., 2018; Shang et al., 2019) (Wang et al., 2018b; Zhang et al., 2019d; Xu et al., 2019c)			
Generation	Graph Generation	(Shchur et al., 2018b; Nowak et al., 2018; Ma et al., 2018; You et al., 2018a, 2018b; De Cao and Kipf, 2018; Li et al., 2018d; Shi et al., 2020; Liu et al., 2019; Grover et al., 2019)			
Combinatorial Optimization	Combinatorial Optimization	(Khalil et al., 2017; Nowak et al., 2018; Li et al., 2018e; Kool et al., 2019; Bello et al., 2017; Vinyals et al., 2015b; Sutton and Barto, 2018; Dai et al., 2016; Gasse et al., 2019; Zheng et al., 2020a; Selsam et al., 2019; Sato et al., 2019)			
Traffic Network	Traffic State Prediction	(Cui et al., 2018b; Yu et al., 2018; Zheng et al., 2020b; Guo et al., 2019)			
Recommendation Systems	User-item Interaction Prediction Social Recommendation	(van den Berg et al., 2017; Ying et al., 2018a) (Wu et al., 2019c; Fan et al., 2019)			
Others (Structural)	Stock Market Software Defined Networks AMR Graph to Text	(Matsunaga et al., 2019; Yang et al., 2019; Chen et al., 2018c; Li et al., 2020; Kim et al., 2019) Rusek et al. (2019) (Song et al., 2018a; Beck et al., 2018)			
Text Text Classification Sequence Labeling Neural Machine Translation Relation Extraction Event Extraction Fact Verification Question Answering Relational Reasoning		(Peng et al., 2018; Yao et al., 2019; Zhang et al., 2018d; Tai et al., 2015) (Zhang et al., 2018d; Marcheggiani and Titov, 2017) (Bastings et al., 2017; Marcheggiani et al., 2018; Beck et al., 2018) (Miwa and Bansal, 2016; Peng et al., 2017; Song et al., 2018b; Zhang et al., 2018f) (Nguyen and Grishman, 2018; Liu et al., 2018) (Zhou et al., 2019; Liu et al., 2020; Zhong et al., 2020) (Song et al., 2018c; De Cao et al., 2019; Qiu et al., 2019; Tu et al., 2019; Ding et al., 2019) (Santoro et al., 2017; Palm et al., 2018; Battaglia et al., 2016)			
Image Social Relationship Understanding Image Classification Visual Question Answering Object Detection Interaction Detection Region Classification Semantic Segmentation		Wang et al. (2018c) (Garcia and Bruna, 2018; Wang et al., 2018d; Lee et al., 2018b; Kampffmeyer et al., 2019; Marino et al., 2017) (Teney et al., 2017; Wang et al., 2018c; Narasimhan et al., 2018) (Hu et al., 2018; Gu et al., 2018) (Qi et al., 2018; Jain et al., 2016) Chen et al. (2018d) (Liang et al., 2016, 2017; Landrieu and Simonovsky, 2018; Wang et al., 2018e; Qi et al., 2017b)			
Other (Non-structural)	Program Verification	(Allamanis et al., 2018; Li et al., 2016)			

Approaches

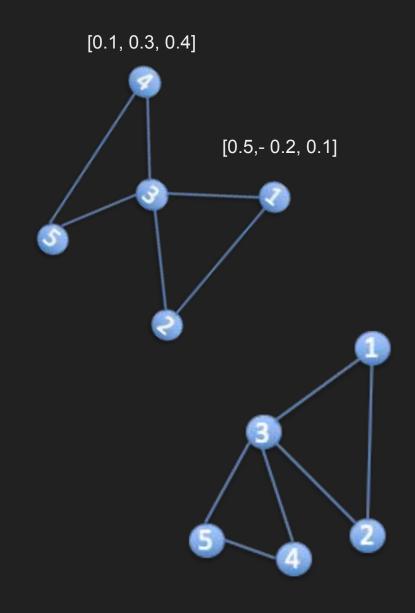
- Nodes are naturally defined by their neighbors and connections
- Give every node a state (x) to represent its concept
- Use the node state (x) to produce an output (o)
- Final state (x_n) of the node is normally called "node embedding"
- Task is to determine the "node embedding" of each node, by looking at the information on its neighboring nodes



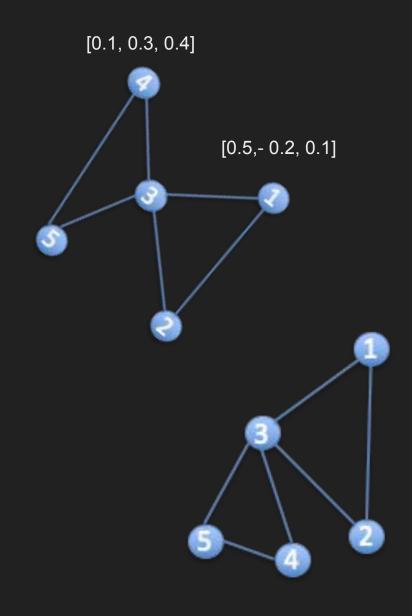
- Nodes are naturally defined by their neighbors and connections
- Give every node a state (x) to represent its concept
- Use the node state (x) to produce an output (o)
- Final state (x_n) of the node is normally called "node embedding"
- Task is to determine the "node embedding" of each node, by looking at the information on its neighboring nodes



- Nodes are naturally defined by their neighbors and connections
- Give every node a state (x) to represent its concept
- Use the node state (x) to produce an output (o)
- Final state (x_n) of the node is normally called "node embedding"
- Task is to determine the "node embedding" of each node, by looking at the information on its neighboring nodes



- Nodes are naturally defined by their neighbors and connections
- Give every node a state (x) to represent its concept
- Use the node state (x) to produce an output (o)
- Final state (x_n) of the node is normally called "node embedding"
- Task is to determine the "node embedding" of each node, by looking at the information on its neighboring nodes

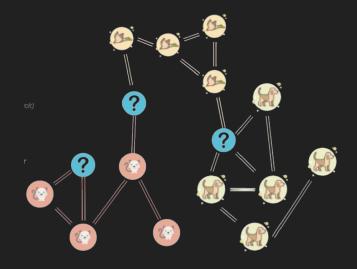


Original GNN - Training

- TODO

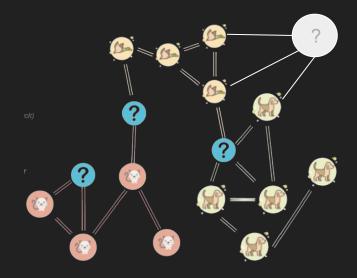
Original GNN - Limitations

- Features on the edges cannot be effectively modeled in the original GNN
 - Although we can replace edge by a one new node + 2 new edges
- The input graph consist of nodes with label information and undirected edges, which is the simplest case
- Transductive learning
 - We can not use it on "during the training unseen stuff"



Original GNN - Limitations

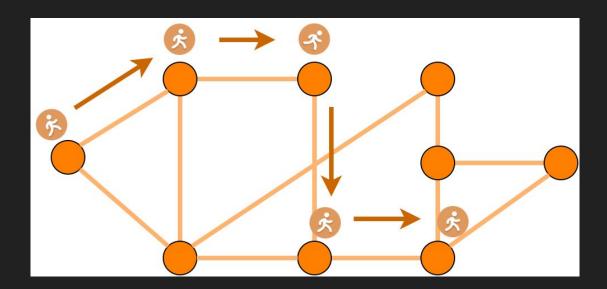
- Features on the edges cannot be effectively modeled in the original GNN
 - Although we can replace edge by a one new node + 2 new edges
- The input graph consist of nodes with label information and undirected edges, which is the simplest case
- Transductive learning
 - We can not use it on "during the training unseen stuff"



NLP Inspiration

- DeepWalk

- First (?) graph embedding method
- Applies SkipGram on the generated random walks

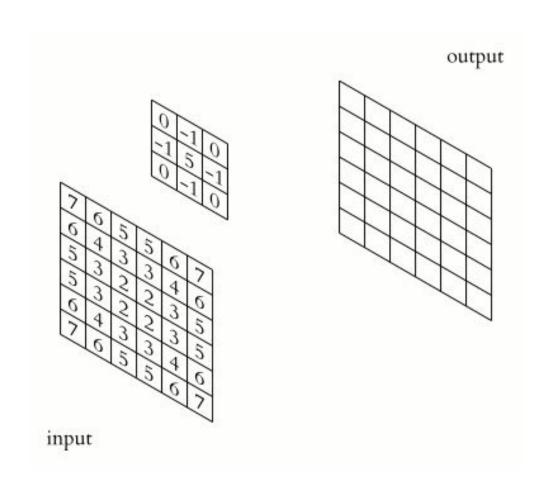


- No parameters shared between nodes in the encoders
 - Number of params grows linearly with number of nodes
- Direct embeddings
 - Lack ability of generalization
 - (can not be applied to new graphs)

Layers

Convolutional GNNs

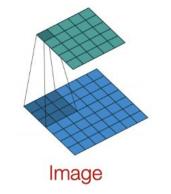
- The idea of convolution on an image is to sum the neighboring pixels around a center pixel, specified by a filter with parameterized size and learnable weight
- GNNs adopts the same idea by aggregate the features of neighboring nodes into the center node

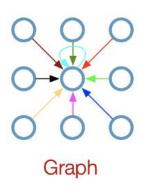


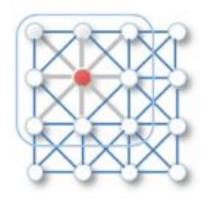
Convolutional GNNs

- The idea of convolution on an image is to sum the neighboring pixels around a center pixel, specified by a filter with parameterized size and learnable weight
- GNNs adopts the same idea by aggregate the features of neighboring nodes into the center node

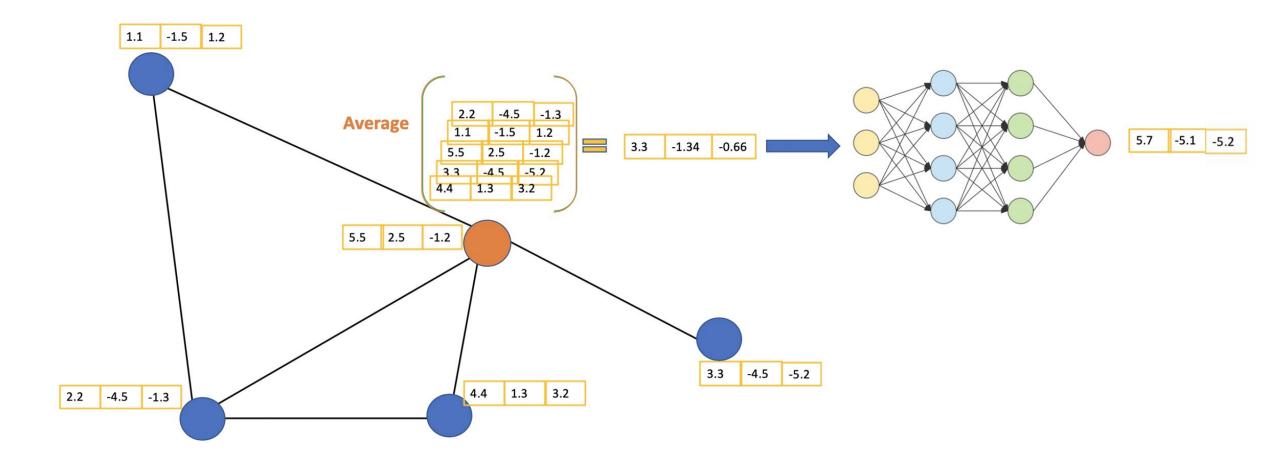
Single CNN layer with 3x3 filter:







CGNN General Idea



- Still transductive learning

$$h_v^{(0)} = x_v$$
 for all $v \in V$.

Node v's ... is just node v's initial original features. embedding.

and for $k=1,2,\ldots$ upto K:

$$m{h}_{m{v}}^{(m{k})} = m{f}^{(m{k})} \left(m{W}^{(m{k})} \cdot rac{\sum\limits_{u \in \mathcal{N}(v)} m{h}_{u}^{(m{k}-1)}}{|\mathcal{N}(v)|} + m{B}^{(m{k})} \cdot m{h}_{m{v}}^{(m{k}-1)}
ight)$$
 for all $v \in V$.

Node v's Mean of v's Node v's embedding at step k. Heat of k and the step k an

Color Codes:

- \blacksquare Embedding of node v.
- \blacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

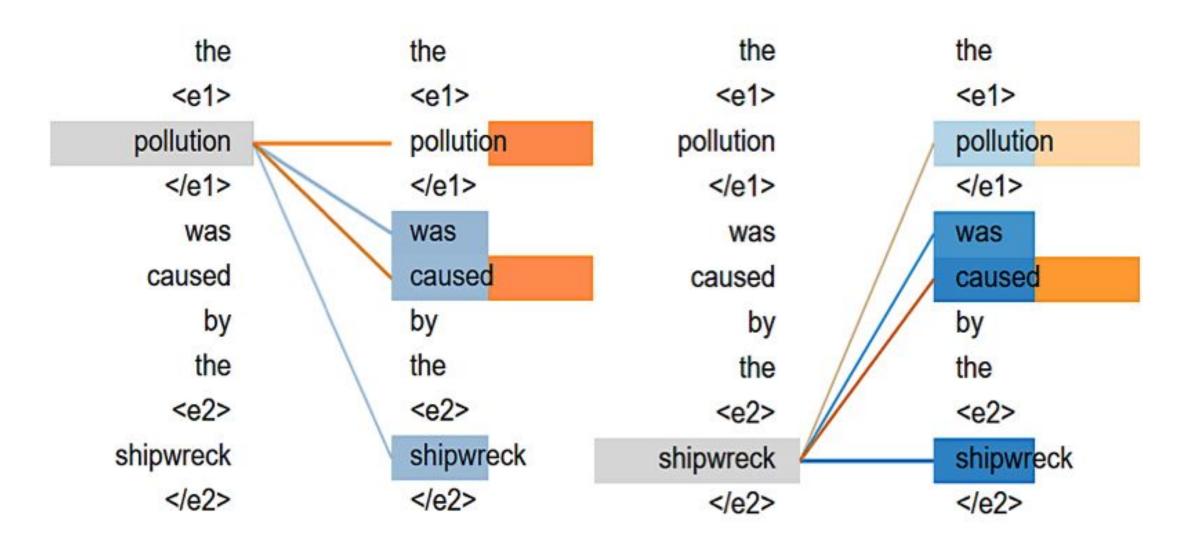
Predictions can be made at each node by using the final computed embedding:

$$\hat{y_v} = \text{PREDICT}(\frac{h_v^{(K)}}{v})$$

where PREDICT is generally another neural network, learnt together with the GCN model.

For each step k, the function $f^{(k)}$, matrices $W^{(k)}$ and $B^{(k)}$ are shared across all nodes.

Attention



$$oldsymbol{h}_v^{(0)} = oldsymbol{x}_v \quad ext{ for all } v \in V.$$

Node v's ... is just node v's initial original features. embedding.

and for $k=1,2,\ldots$ upto K:

$$m{h_v^{(k)}} \qquad = \quad m{f^{(k)}} \left(m{W^{(k)}} \cdot \left[\sum_{u \in \mathcal{N}(v)} lpha_{vu}^{(k-1)} h_u^{(k-1)} + lpha_{vv}^{(k-1)} m{h_v^{(k-1)}}
ight]
ight) \qquad ext{for all } v \in V$$

Node v's Weighted mean of Node v's embedding at v's neighbour's embedding at step k. embeddings at step k-1.

where the attention weights $lpha^{(k)}$ are generated by an attention mechanism $A^{(k)}$, normalized such that the sum over all neighbor

$$lpha_{vu}^{(k)} \qquad = \qquad rac{A^{(k)}(oldsymbol{h}_v^{(k)}, h_u^{(k)})}{\displaystyle\sum_{w \in \mathcal{N}(v)} A^{(k)}(oldsymbol{h}_v^{(k)}, h_w^{(k)})} \qquad \qquad ext{for all } (v,u) \in E.$$

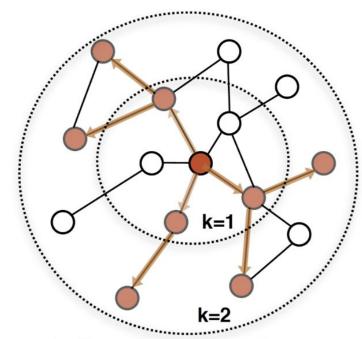
Color Codes:

- \blacksquare Embedding of node v.
- lacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

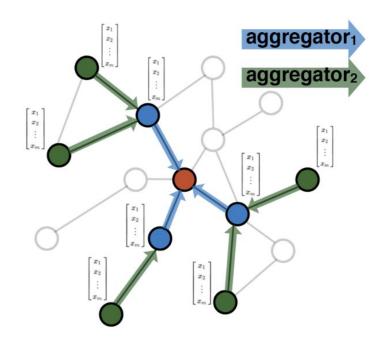
GraphSAGE (Graph Sample And Aggregate)

- Introduces SAGEConv
- Learns aggregation function params not node features
 - → inductive learning
 - \rightarrow we can predict things unseen during the training

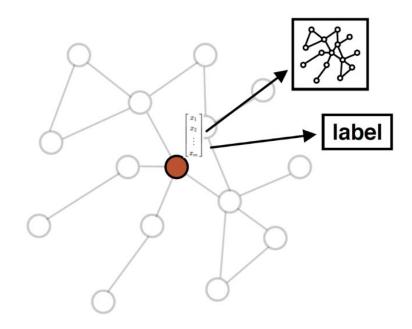
GraphSAGE viz.



1. Sample neighborhood



2. Aggregate feature information from neighbors



3. Predict graph context and label using aggregated information

GraphSAGE (Graph Sample And Aggregate)

- Different aggregation options
 - Mean
 - RNNs (not permutation-invariant)
 - Avg/Max Pooling
 - FF NN
 - ...

$$m{h}_v^{(0)} = m{x}_v \quad ext{ for all } v \in V.$$

Node v's ... is just node v's initial original features.

embedding.

and for $k=1,2,\ldots$ upto K:

$$m{h_v^{(k)}} = m{f^{(k)}}\left(m{W^{(k)}}\cdot\left[m{ ext{AGG}}_{u\in\mathcal{N}(v)}(\{h_u^{(k-1)}\}),\ m{h_v^{(k-1)}}
ight]
ight)$$
 for all $v\in V$.

Node v's embedding at v's neighbour's embedding at step k. embeddings at step k-1 ... step k-1 concatenated

... concatenated with ...

Color Codes:

- \blacksquare Embedding of node v.
- \blacksquare Embedding of a neighbour of node v.
- (Potentially) Learnable parameters.

Predictions can be made at each node by using the final computed embedding:

$$\hat{y_v} = \text{PREDICT}(h_v^{(K)})$$

where PREDICT is generally another neural network, learnt together with the GraphSAGE model.

For each step k, the function $f^{(k)}$, AGG and matrix $W^{(k)}$ are shared across all nodes.

Benchmark

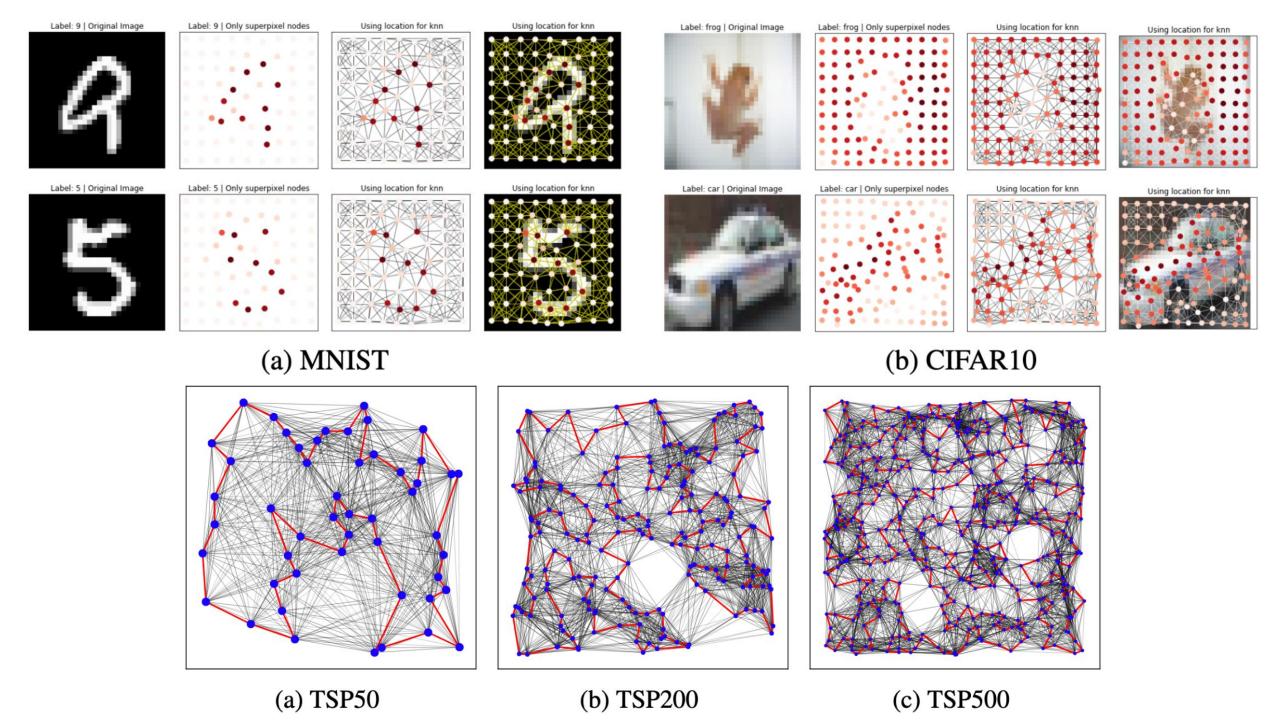
So we have GNN. But is it useful?

Paper claims that

- GNNs are standard toolkit to learn from graphs
- Single benchmark suite was missing, but is very much needed
 - E.g. ImageNet in CV
- New ideas evaluated mostly on small datasets
 - I can confirm from my experience
- Introduces GNN benchmarking framework
 - Almost 2k stars on Github

Table 1: Summary statistics of datasets included in the proposed benchmark.

Domain & Construction	Dataset	#Graphs	#Nodes	Total #Nodes	Task
Chemistry: Real-world molecular graphs	ZINC	12K	9-37	277,864	Graph Regression
Mathematical Modelling: Artificial graphs generated from Stochastic Block Models	PATTERN CLUSTER	14K 12K	44-188 41-190	1,664,491 1,406,436	Node Classification
Computer Vision: Graphs constructed with SLIC super-pixels of images	MNIST CIFAR10	70K 60K	40-75 85-150	4,939,668 7,058,005	Graph Classification
Combinatorial Optimization: Uniformly generated artificial Euclidean graphs	TSP	12K	50-500	3,309,140	Edge Classification
Social Networks: Real-world citation graph	COLLAB	1	235,868	235,868	Edge Classification
Circular Skip Links: Isomorphic graphs with same degree	CSL	150	41	6,150	Graph Classification



Graph-agnostic NNs

- MLP baseline
- Updates each node independently
- Nodes aggregated using task-specific layer

Graph-agnostic NNs

- MLP baseline
- Updates each node independently
- Nodes aggregated using task-specific layer
- \rightarrow consistently low scores across all datasets
- \rightarrow shows necessity of GNNs

Findings

- WL-GNN space and time complexity O(n * n) and O(n * n * n) respectively
- Attention based neighborhood aggregation performs generally best
- Problems with models that process adjacency matrices
 - Can not batch graphs with different sizes
 - Out of memory errors are quickly reached
- Edge representation improves link prediction
 - +10% F1 score on TSP problem
 - initializing the edge representations with euclidean distances between nodes

NLP

Every Document Owns Its Structure

Inductive Text Classification via GNN

Abstract

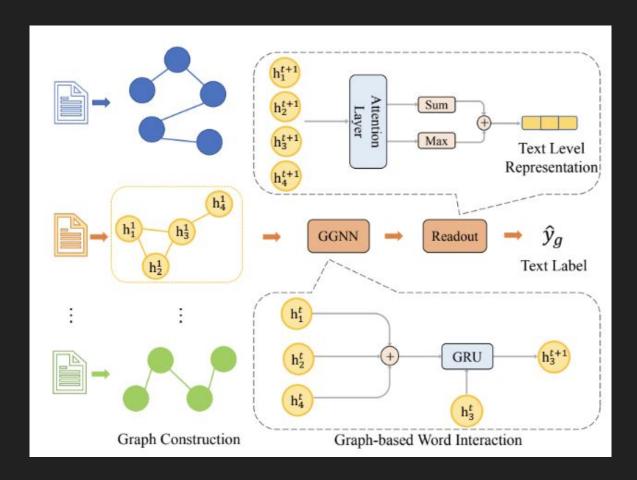
- Proposes TextING
 - Text classification task
 - Builds individual graph for each document
 - Use GNN to learn word
 representations
 Can produce embeddings for
 unseen words in new
 documents
- Claims to outperform SOTA TC methods (2020) and requires less data

TextING

- Train only on training documents
- Generalise to new documents
- Information of word nodes in propagated to their neighbours via Gated Graph
 Neural Networks
- And nodes are then aggregated into document embedding

TextING - Graph Construction

- Unique Word → Node
- Co-occurrences of words → Edges
 - Within fixed-size sliding window
 (3 by default)
- Embedding of nodes are initialized with word features of dimension d
 - Pre-initialized with Word2Vec

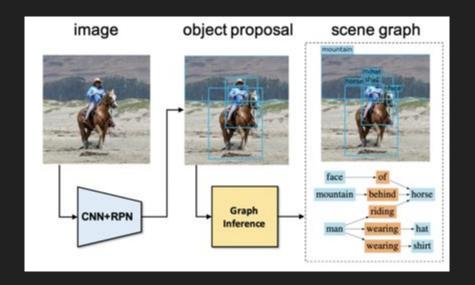


Computer Vision

GNN in Computer Vision

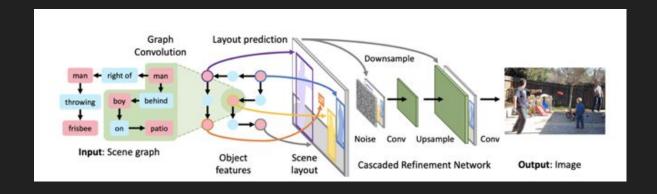
Model relationships of objects

 Using graphs to model the relationships between objects detected by an another model



Generate images

Provide semantic structure of the image as a graph



GNN in Computer Vision 2: Zero-Shot learning

- Classify a class given NO training examples
- Need to think more "logically"
- Create a graph representation that models relationships

- Okapi is
 - Animal
 - Deer-faced
 - Four legs
 - Zebra stripped

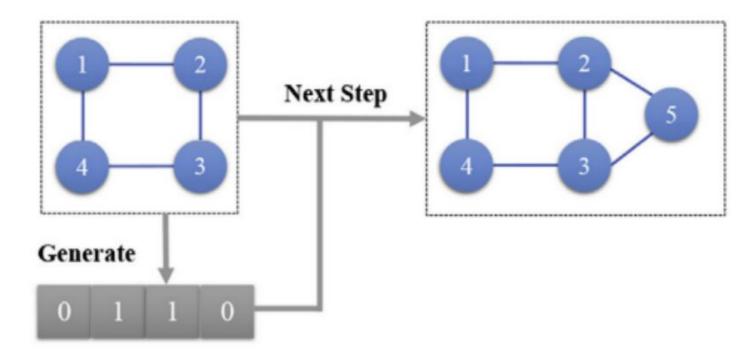
Recommender systems

Pixie

Pinterest

- Graph based
- Real-time
- Scalable
 - 3 billion nodes
 - 17 billion edges
 - 200+ million users
- 80% of user engagement on Pinterest
- Improvement on random-walk alg.
- +50% of user eng. to previous non-graph based system

Comparing Graphs



(f) Generation

Two tasks in our current paper-in-progress

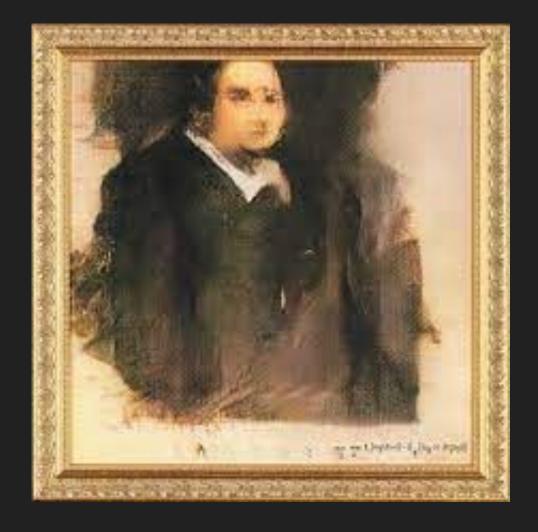
Reconstruction / Completition

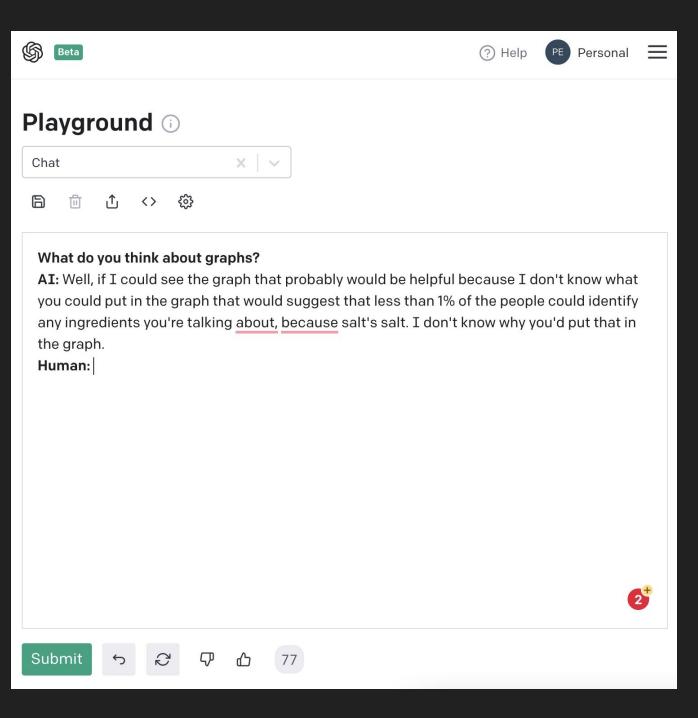
Given statistics like |V|, avg. degree, graph score, ... reconstruct the graph as best as possible.

Learn and generate

Given a graph set of N graphs, learn their properties and generate new ones.

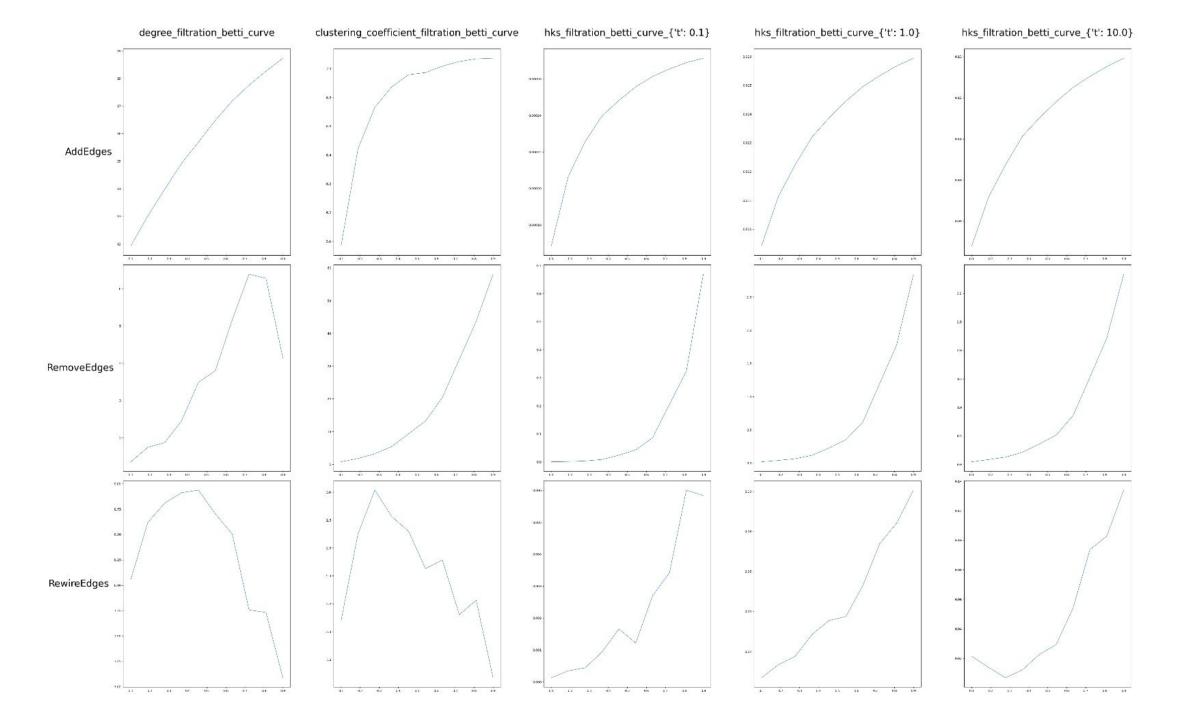
How to evaluate?





Solution

- Take any function f(G1, G2) = d
 - Accepting either single graph G_ or set of graphs G_
- Evaluate f(G1, G1)
 - Ideally should be 0:)
- Permute G1 with increasing probability for
 - Adding edges
 - Removing edges
 - Switching edges
 - \rightarrow e.g. remove 10% of edges in the graph, then 20%, 30%, ..., 99%
- In the paper they proposed 5 different functions



Ending Credits

Limitations

- A lot of variants for a lot of tasks
- Interpretability
- Pretraining
- Complex graph structures

Conclusion

- + Potential generalization
- + Integration of SOTA NLP and CV models
- + Structural information

- Efficiency
- No "single best model"
 (e.g. DistilBERT in NLP, EfficientNet in CV)
- One year and I still didn't find "proper" use-case for them in Socialbakers / Empl

Questions

and hopefully answers

References

- A Gentle Introduction to Graph Neural Networks
- Understanding Convolutions on Graphs
- Graph Theory
- Benchmarking Graph Neural Networks
- Evaluation Metrics for Graph Generative Models: Problems, Pitfalls, and Practical Solutions
- Graph Neural Networks: A review of methods and applications
- Pixie
- Every Document Owns Its Structure
- Graph Random Walks