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General intelligence

General intelligence

H. Geffner’s talk about Model-free learners and model-based solvers
[5]

Similar Kahneman’s mind model with System 1 and System 2 in [7]

To reach full potential we need both

In this presentation

model-based solver automated planning
model-free learner deep learning
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Introduction to planning

Introduction to Planning

Problems typically modeled by hand

Standard languages / representation (PDDL, PPDDL, STRIPS, FDR,
...)

Solved by off-shelf planners
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Introduction to planning

Introduction to Planning

Planning problem in PDDL

Domain definition

Predicates
Actions - parameters, preconditions, effects

Problem definition

Objects
Initial state - set of propositions
Goal state specification - set of propositions
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Introduction to planning

Introduction to Planning
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Introduction to planning

Introduction to Planning

Planning problem represented by STRIPS

Π = ⟨F ,O, si , sg , c⟩
F - set of facts that can hold in the world

O - set of operators which can be used to transform the world

si - fully defined initial state of the world

sg - goal condition that holds in every goal state

c - cost function which gives cost to every operator
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Introduction to planning

Introduction to Planning

State

Every state s ∈ S is a set of facts from F .

Operator

Every operator is a tuple that contains preconditions, add effects and
delete effect for the given operator

o = ⟨pre(o), add(o), del(o)⟩

Operator o is applicable in state s if pre(o) ⊂ s. By applying o in s we get
state s ′

s ′ = (s\del(o) ∪ add(o))
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Introduction to planning

Introduction to Planning

PDDL and STRIPS action
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Introduction to planning

Introduction to Planning

Relaxed STRIPS problem

Simplification of the problem

Delete-relaxation

Π′ = ⟨F ,O ′, si , sg , c⟩
o ′ = ⟨pre(o), add(o)⟩
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Introduction to planning

Introduction to Planning
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B

C D

pickup(A)'
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Introduction to planning

Introduction to Planning

Transition system

Σ = ⟨S ,A, γ, c⟩
S - set of states

A - set of actions

γ - state transition function

c - cost function

Solving a planning problem means looking for a path in the graph induced
by the transition system.

Forward search

Backward search

Bidirectional search
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Introduction to planning

Introduction to Planning

Heuristic function

Heuristic function h(s) maps any state s to a value that represents path
length from s to a goal state.
Function that maps each state s to the length of shortest path from s to a
goal is h∗ which is the perfect or optimal heuristic.
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Deep Learning in Classical Planning

Deep Learning in Classical Planning

Many different possible applications (search, heuristic, grounding,
policy...)

Data which is not noisy

Relatively small data sets

Hard to compare with existing approaches
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Deep Learning in Classical Planning

Deep Learning in Classical Planning

A lot of successful applications that have proved functionality

Framework inspired by Kahneman’s work [3]

Learning policies and heuristics from images [6]

Planning with images in latent space [1], [2]

Using neural networks to learn heuristic functions [4]
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Deep Learning in Classical Planning

Deep Learning in Classical Planning

Drawbacks of many of these approaches

Input size or format

Domain-independence / generalization abilities

Size of the network

Speed of the evaluation

Time required for training

Overall results
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Deep Learning in Classical Planning

Deep Learning in Classical Planning

A couple approaches tried to create standardized architectures for planning
purposes

STRIPS-HGN - Hypergraph Neural Networks [8]

ASNets - Action Scheme Neural Networks [10], [9]
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STRIPS-HGN

STRIPS-HGN

Works with a graph of the relaxed problem (STRIPS)

Domain-independent

Input: state - value pairs from optimal plans

Output: domain-independent heuristic function represented by the
HGN

Contributions

Hypergraph framework which generalized GNNs (not main focus of the
paper)
STRIPS-HGN architecture which is used for learning the heuristic
functions
Evaluation that shows how STRIPS-HGN compares to relaxation
heuristics (hmax , hadd , LM-cut)
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STRIPS-HGN

HGN

Hypergraph is defined as G = (u,V ,E )

u - hypergraph (global) features

V - set of vertices

E - set of edges; each edge has features, list of ”head” indices and list
of ”tail” indices

Hypergraph block

Hypergraph to hypergraph function

Contains update and aggregation functions

Update updates latent representation of vertices, hyperedges and
global features (emulation of message passing)
Aggregation collect / pool features
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STRIPS-HGN

HGN
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STRIPS-HGN

HGN

Update functions were implemented as MLP

Aggregation functions were implemented as element-wise sum

should be permutation invariant

Michaela Urbanovská Deep Learning for Classical Planning 21/01/2022 21 / 62



STRIPS-HGN

STRIPS-HGN

STRIPS-HGN is instantiation of HGN framework for learning heuristics.
STRIPS-HGN composes the HGN blocks into encode-process-decode
architecture.

encode block encodes input features into latent space

process block is recurrently applied to the data to emulate message
passing

decode block obtains heuristic value from processed latent features
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STRIPS-HGN

STRIPS-HGN

Input Ginp = (uinp,Vinp,Einp) (hypergraph)

follows structure of the relaxed STRIPS problem

uinp - global features (not required)

Vinp - input features for |F | propositions of the problem

true in current state
true in goal
fact landmark

Einp - hyperedges for all relaxed actions

Output Gout = (uout ,Vout ,Eout) (hypergraph)

uout - 1-dimensional vector that represents the heuristic

Vout and Eout are empty sets
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STRIPS-HGN

STRIPS-HGN

Encode block

encodes the hypergraph into the latent space

Process block

in each step produces a new hypergraph

hypergraph from previous iteration gets concatenated with the new
one

M times in total

message passing M vertices away at maximum

Decode block

decodes final hypergraph into Gout which has heuristic value in the
global feature uout
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STRIPS-HGN

STRIPS-HGN
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STRIPS-HGN

STRIPS-HGN - Training

Training data

Set of training problems P = {p1, p2, ..., pn}
Solve every pi ∈ P and obtain h∗ for every state on the optimal path

Generate training pairs (s, h∗(s))

Generate delete-relaxed hypergraph G for every pi and s

Get training samples (G , h∗(s))
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STRIPS-HGN

STRIPS-HGN - Training

Process block outputs a hypergraph in each step so loss function is
aggregated over all steps

MSE loss function

Minibatch gradient descent

Minibatch size = 1

Michaela Urbanovská Deep Learning for Classical Planning 21/01/2022 27 / 62



STRIPS-HGN

STRIPS-HGN - Results

8 problem domains

Different training configurations
Domain-specific (trained and tested on same domain)
Multi-domain (trained and tested on a set of 3 domains)
Domain-independent (trained on a set of domains, tested on unseen
domains)
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STRIPS-HGN

STRIPS-HGN - Results
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STRIPS-HGN

STRIPS-HGN - Results
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STRIPS-HGN

STRIPS-HGN - Results
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STRIPS-HGN

STRIPS-HGN - Results
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STRIPS-HGN

STRIPS-HGN - Results

Domain-specific

Quite impressive results
Better than some of the competing heuristics

Multi-domain

Results showed ability to generalize over three training domains

Domain-independent

Not very good performance
Problems with scaling (time)
Reusability of the learned knowledge visible in similar domains
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STRIPS-HGN

STRIPS-HGN - Drawbacks

Very expensive architecture to evaluate

Hard to use in a running search algorithm

Tuning of parameter M is problematic

Increases time but gives better estimates
M = 10 in the experiments

Parametrization based on number of receivers / senders on each edge

Uses padding in the feature vectors
Not ”truly” domain-independent architecture
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ASNets

ASNets

Learns generalized policy over planning problem (probabilistic or
deterministic)

Architecture mimics the problem definition scheme

Weight sharing

Not domain-independent

Input: planning problem (probabilistic or deterministic)

Output: trained network that provides a generalized policy for any
problem from a given domain

Contributions:

Architecture that generalized over any problem in given domain
Representation suitable for weight sharing
Training method for this architecture
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ASNets

ASNets - Background

Initially used on Stochastic Shortest Path problems (SSPs)
problem P = (S ,A,T ,C ,G , s0)

S - set of states

A - set of actions

T - transition function (T (s, a, s ′) probability of ending up in s ′ when
selecting action a in state s)

C - cost function

G - set of goal states

s0 - initial state

Solution to SSP is a policy π

π should aim to minimize expected cost of reaching G from s0
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ASNets

ASNets - Background

Compact representation of SSP → factored SSP (P,A, s0, s∗,C )

P - set of binary propositions

A - set of actions (each has preconditions and effects)

s0 - initial state

s∗ - goal state

C - cost function

State space is defined as a set of all binary strings of length |P|.
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ASNets

ASNets - Background

Compact representation of set of factored SSPs → lifted SSP (F ,A,C )

F - set of predicates

A - set of action schemas

C - cost function

PPDDL is standard language to describe lifted and factored SSPs.

splits problem in to problem and domain definition
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ASNets

ASNets - Architecture

Takes advantage of the action schemas

Domain-specialized structure

Using same set of weights θ with problem of any size (from one
domain)

Alternating action layers and proposition layers

Initial version focused on PPDDL [10]

Later more focus on PDDL [9]
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ASNets

ASNets - Architecture

Action layers

Action layer l consists of action modules

One module for one action schema A

ϕlA = f (W l
A · ulA + blA), ϕ

l
A ∈ dh

dh is a fixed intermediate representation size
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ASNets

ASNets - Architecture

ula (input) construction

enumerate propositions {p1, p2, ..., pM} related to the action a

pi is related to a if p appears in pre(a) or eff (a)

concatenate their hidden representations from previous proposition
layer

ψl−1
j is hidden representation of pj in the preceding proposition layer

l − 1

ula = [ψl−1
1 . . . ψl−1

M ]T , ula ∈ dh ·M

It is possible to use same weight matrix for every action instantiated from
the action schema A.
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ASNets

ASNets - Architecture

A

B

C D

ontable(A)

ontable(D)
on(C,B)

emptyhand

ontable(x)
on(x,y)

emptyhand

Predicates Propositions

clear(x)

clear(A)

ontable(C)

clear(B)
clear(D)

holding(x)

Action schemas
pickup(x)

putdown(x)

stack(x,y)

unstack(x,y)

Actions
pickup(A)
...
pickup(D)
putdown(A)
...
putdown(D)

stack(A,B)
...
stack(D,C)
unstack(A,B)
...
unstack(D,C)
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ASNets

ASNets - Architecture

Action module - pickup(x) related predicates = {emptyhand, clear(x), ontable(x), holding(x)}

Action module
pickup(x)

=

...

...

...

M = 4
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ASNets

ASNets - Architecture

Input layer

Classified as action layer with modifications

uina =

v
g
m


v - vi = 1 if pi is true in current state

g - gi = 1 if pi is true in a goal state

m - mi = 1 if a is applicable in current state
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ASNets

ASNets - Architecture

= [1 1 1 0 0 0 0 0 1]'

v = [1 1 1 0]'

em
pt
yh

an
d

g = [0 0 0 0]'

m = [1]

cl
ea

r(
A)

on
ta
bl
e(
A)

ho
ld
in
g(
A)

A

B

C D
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ASNets

ASNets - Architecture

Output layer

Classified as action layer with modifications

Outputs one digit for every action a that can be chosen in the current
state

Digits passed through masked softmax (only chooses from applicable
actions)
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ASNets

ASNets - Architecture

Proposition layers

Proposition layer l consists of proposition modules

One proposition module for one predicate

ψl
p = f (W l

p · v lp + blp), ψ
l
p ∈ dh
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ASNets

ASNets - Architecture

v lp (input) construction

Enumerate all action schemas A1, ...,AL ∈ A which reference p in
precondition or effect

v lp =

pool({ϕla
T |op(a) = A1 ∧ R(a, p)})

. . .

pool({ϕla
T |op(a) = AL ∧ R(a, p)})

 , v lp ∈ dh · L

pool(x) combines several dh-dimensional vectors to one
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ASNets

ASNets - Architecture

Proposition module - clear(x) related action schemas = {pickup(x), putdown(x), stack(x,y), unstack(x,y)}
L = 4

=

...

...

...

...
Proposition 
module
clear(x) ...
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ASNets

ASNets - Architecture

Architecture enhancements

Different features can be added to the input

Heuristic values, information about landmarks, ...

Addition through extending the input feature vector of the first layer

Skip connections
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ASNets

ASNets - Training
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ASNets

ASNets - Training

Similar data collection as in bootstrapping methods

Loss function: cross-entropy classification loss

ADAM + SGD

Other optimization methods tried

Cost of computing optimal policy for small samples is lower than
optimizing with reinforcement learning

2 hours of training time
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ASNets

ASNets - Results

Results for both probabilistic and deterministic domains (extended in
related journal paper)

One ASNet trained for each problem domain

All ASNets had the same architecture parameters
3 action layers, 2 proposition layers, dh = 16, ELU activation

ASNet versions in the figures

ASNets -hadd teacher
ASNets (adm.) - admissible teacher (LM-cut heuristic features)
ASNets (no h.) - no heuristic inputs
ASNets (PE) - probabilistic execution (in the rollout)
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ASNets

ASNets - Results
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ASNets

ASNets - Results
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ASNets

ASNets - Results

Coverage of different architecture parametrizations (best possible coverage
in bold)
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ASNets

ASNets - Results

Ability to generalize on larger instances after training on smaller ones

Impressive convergence results in presented domains

Starting point for more research in planning community applicable to
different problems
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ASNets

ASNets - Drawbacks

Line of reasoning is as long as number of layers (partially overcome by
the added features)

Quite expensive to evaluate

Hard to scale architecture building fast on large problems (many
actions and propositions)
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Conclusion

Conclusion

Deep learning in planning is still a hot topic

Many works try to create a standard approach rather than reusing
different tools for different problem

Promising results

A lot of drawbacks
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Conclusion

Q&A

Thank you for your attention!
Questions?
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Action schema networks: Generalised policies with deep learning.
In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pages 6294–6301. AAAI Press, 2018.
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