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Structured Output Prediction: the statistical model @
2/17

The setting
® X set of input observations
¢ Y finite set of hidden states, e.g.
e Flat classification: Y ={1,..., K}
e Structured classif.: YV =JY; X --- X Yy is a labeling of parts V.
¢ (z,y) € X x Y randomly drawn from r.v. with p.d.f. p(z,y)

¢ 0:Y xY —[0,00) loss function
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Structured Output Prediction: the statistical model @
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The setting
® X set of input observations
¢ Y finite set of hidden states, e.g.
e Flat classification: Y ={1,..., K}
e Structured classif.: YV =JY; X --- X Yy is a labeling of parts V.
¢ (z,y) € X x Y randomly drawn from r.v. with p.d.f. p(z,y)

¢ 0:Y xY —[0,00) loss function

The task: find a strategy h: X — ) with the minimal expected risk

R* = , in R(h) where R(h) = Ez y)~plf(y, h(T))]
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Solving the prediction problem from examples @

3/17
¢ Assumption: we have an access to examples

{(zy"), (2% y%),...}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).
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¢ Assumption: we have an access to examples

{(zy"), (2% y%),...}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).

¢ a) Evaluation: Estimate R(h) of a given h: X — ) using test set
S = {(#y) € (X x V) |i=1,....1}

drawn i.i.d. from p(z,y).
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Solving the prediction problem from examples @
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¢ Assumption: we have an access to examples

{(zy"), (2% y%),...}

drawn from i.i.d. r.v. distributed according to unknown p(z,y).

¢ a) Evaluation: Estimate R(h) of a given h: X — ) using test set
S = {(#y) € (X x V) |i=1,....1}

drawn i.i.d. from p(z,y).
¢ b) Learning: find h: X — Y with small R(h) using training set

T ={@"y) e (X x V) [i=1,...,m}

drawn i.i.d. from p(z,y).
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Evaluation: Estimation of the expected risk from examples @
4/17

¢ Given a predictor h: X — ), compute the empirical risk

1 [

Rgi(h) = 7 > Uy’ h(a))

1=1

and use it as a proxy for R(h) = E; ,)~p(L(y, h(x))).
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¢ Given a predictor h: X — ), compute the empirical risk

1 [

Rgi(h) = 7 > Uy’ h(a))

1=1

and use it as a proxy for R(h) = E; ,)~p(L(y, h(x))).

¢ The value of the empirical risk Rgi(h) is a random number.
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Evaluation: Estimation of the expected risk from examples @
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¢ Given a predictor h: X — ), compute the empirical risk

[
Ra(h) = 7 Uy hia)

1=1

and use it as a proxy for R(h) = E; ,)~p(L(y, h(x))).
¢ The value of the empirical risk Rgi(h) is a random number.

¢ Application of Hoeffding inequality: for any € > 0, the probability of the
generalization error being at least € can be bound by

2l€2

Pslw( Rsi(h) — R(h)| = 8) < 2¢ (fmin—tmax)?

-
high generalization error
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Learning: find a strategy h: X — ) with a small R(h) using the
training set of examples

Tm:{(xi,yi)e(?(xy)\izl,...,m}

drawn from i.i.d. according to unknown p(x,y).

Use prior knowledge to select hypothesis space

HCY  ={h: X =)}

The learning algorithm
A: UZ_ (X xY)"™ —H

selects strategy h,, = A(7T™) based on the training set 7™.
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Generative learning (to come later) @
6/17

1. Use the training set 7™ = {(z*,y) e X x Y |1 € {1,...,m}} to
approximate p(z,y) by p(z,y).

For example, use the Maximum-Likelihood method:

(a) Guess the shape of the distribution, e.g.

ﬁw(a:,y) — exp(w, Qb(.fl?,y» ) w e W

Z(w)

(b) Find the ML estimate

m
w,, € argmax Z log pu (", y")

2. Construct a plug-in classifier

hm(z) € argmin B, yp,,,, [£(y; h(z))]
h: X—Y
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CAm ¢

Discriminative learning by Empirical Risk Minimization

7/17
® Use the training set 7™ = {(2%,y) € X x Y |ie€ {1,...,m}} to
approximate the expected risk R(h) by the empirical risk
L 0 i
Rro(h) = =" 0(y', h(a")
i=1

¢ The ERM learning algorithm returns h,,, such that

hon € Argmin Rym(h) (1)

heH

¢ Depending on the choice of H, ¢ and algorithm solving (1) we get
individual instances, e.g.: Structured-Output Perceptron,
Structured-Output Support Vector Machines, Logistic regression, Neural

Networks learned by back-propagation, AdaBoost, . . ..
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Errors characterizing a learning algorithm

The characters of the play:
¢ R* = min,cyx R(h) best attainable (Bayes) risk
¢ R(hyy) best risk in H; hy € Argming, 4, R(h)
¢ R(h,) risk of h,, = A(T,,) learned from T™

8/17
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Errors characterizing a learning algorithm @
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The characters of the play:
¢ R* = min,cyx R(h) best attainable (Bayes) risk
¢ R(hyy) best risk in H; hy € Argming, 4, R(h)
¢ R(h,) risk of h,, = A(T,,) learned from T™

Excess error: the quantity we want to minimize

\(R(hm) - R*)J - \(R(hm) _ R(hH)>J+ \(R(hﬂ) - R*)

S

€Xcess error estimation error approximation error
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Errors characterizing a learning algorithm @
8/17

The characters of the play:
¢ R* = min,cyx R(h) best attainable (Bayes) risk
¢ R(hyy) best risk in H; hy € Argming, 4, R(h)
¢ R(h,) risk of h,, = A(T,,) learned from T™

Excess error: the quantity we want to minimize

\(R(hm) - R*)J - \(R(hm) _ R(hH)>J+ \(R(hﬂ) - R*)

S

€Xcess error estimation error approximation error

® The estimation error is random
® The estimation error depends on m and H

® The approximation error depends only on H
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Statistically consistent learning algorithm @
9/17

¢ The estimation error R(h,,) — R(hy) is random because it is a function
of hy, = A(T™) learned on T™ generated from p(x,y).
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Statistically consistent learning algorithm @

0/17
¢ The estimation error R(h,,) — R(hy) is random because it is a function
of hy, = A(T™) learned on T™ generated from p(x,y).

® We can derive bounds on the probability that the estimation error is
above € > 0, that is,

P(R(hm) ~ R(hy) > s) < U(m, e, H)
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¢ The estimation error R(h,,) — R(hy) is random because it is a function
of hy, = A(T™) learned on T™ generated from p(x,y).

® We can derive bounds on the probability that the estimation error is
above € > 0, that is,

P(R(hm) ~ R(hy) > s) < U(m, e, H)

Definition 1. The algorithm A: U_; (X x V)™ — H is statistically
consistent in H C Y if for any p(x,y) it holds that

m— 00

Ve>0: lim P(R(hm)—R(hH) 25) =0

where h,, = A(T™) is learned from T™ generated from p(x,y).
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Example: ERM is not consistent H is unconstrained @
10/17

® Let ¥ =[a,b] CR, Y = {+1,~1}, £(y,v/) = [y £ ], p( | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.
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® Let X = [0, CR Y = {+1,~1}, £(y,9/) = [y £ ¥'], plx | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

¢ The optimal strategy is h(x) = +1 with the Bayes risk R* = 0.2.
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® Let X = [0, CR Y = {+1,~1}, £(y,9/) = [y £ ¥'], plx | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

¢ The optimal strategy is h(x) = +1 with the Bayes risk R* = 0.2.

¢ Consider learning algorithm which for a given training set
Tm = {(2Yy1),..., (™, y™)} returns strategy

yj if r =27 for some jedl,...,m}
—1 otherwise

T (27) = {
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10/17

Let X = [a,b] CR, ¥ = {+1,~1}, {(y,5") = [y £ ], p(x | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

The optimal strategy is h(x) = +1 with the Bayes risk R* = 0.2.

Consider learning algorithm which for a given training set
Tm = {(2Yy1),..., (™, y™)} returns strategy

yj if r =27 for some jedl,...,m}
—1 otherwise

T (27) = {

The empirical risk is Rym(h,,) = 0 with probability 1 for any m.
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Example: ERM is not consistent H is unconstrained @
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Let X = [a,b] CR, ¥ = {+1,~1}, {(y,5") = [y £ ], p(x | y = +1)
and p(x | y = —1) be uniform distributions on X and p(y = +1) = 0.8.

The optimal strategy is h(x) = +1 with the Bayes risk R* = 0.2.

Consider learning algorithm which for a given training set
Tm = {(2Yy1),..., (™, y™)} returns strategy

yj if r =27 for some jedl,...,m}
—1 otherwise

T (27) = {

The empirical risk is Rym(h,,) = 0 with probability 1 for any m.

The expected risk is R(h,,) = 0.8 for any m.
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Uniform Law of Large Numbers @
11/17

¢ Law of Large Numbers: for any p(x,y) generating 7™, and h € H fixed
without seeing 7™ we have

Ve >0: lim P(|R(h) = Rym(h)| > ) =0
m— 00 N - J

high generalization error
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¢ Law of Large Numbers: for any p(x,y) generating 7™, and h € H fixed
without seeing 7™ we have

Ve >0: lim P(|R(h) = Rym(h)| > ) =0
m— 00 N - J

high generalization error

¢ Uniform Law of Large Numbers: if for any p(z,y) generating 7™ it holds
that

Ve>0: lim IED( [R(hy) — Rym(hy)| > ¢ or
m— 00
|R(h2) — Rym(ha)| > € or
[R(hp) = Rym(hppy)[ > ) =0

high generalization error at least
for one strategy

we say that ULLN applies for H.
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¢ Law of Large Numbers: for any p(x,y) generating 7™, and h € H fixed
without seeing 7™ we have

Uniform Law of Large Numbers

Ve >0: lim P(|R(h) = Rym(h)| > ) =0
m— 00 N - J

high generalization error

¢ Uniform Law of Large Numbers: if for any p(z,y) generating 7™ it holds
that

Ve>0: lim P(Sup [R(h) — Rym(h)| > 5) ~ 0
m— o0 @EH

high generalization error at least
for one strategy

we say that ULLN applies for H.
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¢ Law of Large Numbers: for any p(x,y) generating 7™, and h € H fixed
without seeing 7™ we have

Uniform Law of Large Numbers

Ve >0: lim P(|R(h) = Rym(h)| > ) =0
m— 00 N - J

high generalization error

¢ Uniform Law of Large Numbers: if for any p(z,y) generating 7™ it holds
that

Ve>0: lim P(Sup [R(h) — Rym(h)| > 5) ~ 0
m—o0 bGH

high generalization error at least
for one strategy

J/

we say that ULLN applies for H.

Theorem 1. [f ULLN applies for H then ERM is statistically consistent in H.
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Uniform generalizaton bounds and the estimation error

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]
0.8-

0.6-
0.4
0.2

0.0+

- p(xry='1)
— px,y=+1)

12/17
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Uniform generalizaton bounds and the estimation error

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

0.8- — p(x,y=-1)
— p(x,y=+1)
0.61 — R(h)

0.4

R(hg)z' .........................................

0.0+

12/17
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H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

0.8- — R(h)
—— Ren(h)

0.6

0.4

0.2

0.0-

. |
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Uniform generalizaton bounds and the estimation error

P(

sup |R(h) — Rym(h)| > ¢
heMH

worst generalization error

J/

12/17

) < B(m,H,¢)

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

0.6

0.4

0.2

0.0-

———————
~
~

—————
~—
~
~

-

’/
——’

-,
-
‘‘‘‘‘

— R(h)
) —— Ry(h)

-_—
4~
-
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IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)
heMH

worst generalization error

J/

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

0.8 === — R(h)
) — Ry(h)

0.6 ===

N N — R(h) + ¢

-
-
—————

0.2f M=100 SN\ 7 R(h) - ¢

-
-
\\\\\
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IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)

heH

worst generalization error

J/

12/17

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

0.6

0.4

0.2

0.0-

S —— R(h)

) —— Ry(h)

_______
~
~

________
-
’/
-

-
-
—————

______
-
-
-

-
-
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Uniform generalizaton bounds and the estimation error

IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)
heMH

worst generalization error

J/

H = {h(z) =sign(x — 0)|0 € R}, (y,y') = ly # ¥]
0.8 t---=--__ —— R(h)

12/17
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IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)
hEH
worst genere;lrization error

. g
estimation error

J/

H = {h(z) =sign(x — 0)|0 € R}, (y,y') = ly # ¥]
0.8 t---=--__ —— R(h)

R(hm)
RTm(hm)
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Uniform generalizaton bounds and the estimation error

IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)
hEH
worst gener;ﬁzation error

R(hm) — R(hy) <2 sup |R(h) — Rym(h)|
R he

estimation error

J/

J/

N

worst generalizaton error

H = {h(z) =sign(z —0)|0 € R}, L(y,y") =y # V]

S —— R(h)

R(hm)
RTm(hm)

12/17
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Uniform generalizaton bounds and the estimation error

IP( sup |R(h) — Rym(h)| > 6) < B(m,H,¢)
hEH
worst gener;ﬁzation error

1@( R(hm) = R(h) > 5) < IP( sup [R(h) — Rym(h)

estimation error

J/

IS
25)

N

worst generalizaton error

H = {h(z) =sign(x — 0)|0 € R}, (y,y') = ly # ¥]
0.8 t---=--__ —— R(h)

R(hpm)
RTm(hm)

12/17



http://cmp.felk.cvut.cz

4 N
Proof: ULLN implies consistency of ERM @

For fixed 7™ and h,, € Argmin, o, R7m(h) we have: -
Rltn) = R(t0) = (Bltn) = Roen) ) + (Bro(hn) = Rl
< (Rlm) = Brntlin) ) + (B (h) = R
< 25up [R(1) ~ By (1)
heH
Therefore € < R(hy,) — R(hy) implies 5 < supj,cy ‘R(h) — Rym(h)| and

P(R(hm) — R(hy) > 5) < 1@( sup ‘R(h) - RTm(h)‘ >

)

DO [ ™
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Two examples of uniform generalization bounds
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1. His afiniteset and £: Y X YV — [Upin, maz]. Then,

—9m 2
— m > <
max | R(h) — Rr (h)‘ > 5) < zm\exp< )

PTNpm (max (éma:c — émzn)2

holds for any € > 0 and m € V.
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Two examples of uniform generalization bounds

1. His afiniteset and £: Y X YV — [Upin, maz]. Then,

—9m 2
— m > <
max | R(h) — Rr (h)‘ > 5) < zm\exp< )

(fmaa: - émzn)2

Prpm ( max

holds for any € > 0 and m € V.

2. Uy, y") =y #y'], Y = {+1,—1} and VC-dimension of H is finite.
VC-dimension d of H is the maximal number of inputs which can be

classified by strategies from # in all possible (that is 2¢) ways. Then,

d
2 m e
PTNpm(zlelg R(h) — RTm(h)| > 6) < 4( Zm> e 3
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Rademacher Complexity @
15/17

¢ letz=(x,y) e Z2=X x Y, p(z) =p(x,y) and g(z) = £(y, h(z)).
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Rademacher Complexity @
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¢ letz=(x,y) e Z2=X x Y, p(z) =p(x,y) and g(z) = £(y, h(z)).

Definition 2. Let G C [a,b]” be a set of functions g: Z — [a,b] where
a,bcRanda <b. Let U™ = {z',...,2™} € Z™ be drawn i.i.d. from p(z).
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¢ letz=(x,y) e Z2=X x Y, p(z) =p(x,y) and g(z) = £(y, h(z)).

Definition 2. Let G C [a,b]” be a set of functions g: Z — [a,b] where
a,bcRanda <b. Let U™ = {z',...,2™} € Z™ be drawn i.i.d. from p(z).

The empirical Rademacher complexity of G w.r.t. to the sample U™ is

A 1 &
%m(gjum) — IEJNUnif{—l,—|—1} lsup_ Z O-Zg(z’b)]

m
9€9 =1
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¢ letz=(x,y) e Z2=X x Y, p(z) =p(x,y) and g(z) = £(y, h(z)).

Definition 2. Let G C [a,b]” be a set of functions g: Z — [a,b] where
a,bcRanda <b. Let U™ = {z',...,2™} € Z™ be drawn i.i.d. from p(z).

The empirical Rademacher complexity of G w.r.t. to the sample U™ is

A 1 &
%m(gjum) — IPj’arvUnif{—l,—|—1} lsup_ Z Uzg(zl)]

m
9€9 =1

The Rademacher complexity of G w.r.t. distribution p(z) is

%m(g) = EumNpm(z) lﬁ%m(g,um)]
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Rademacher-based uniform convergence bounds
16/17

¢ Let G C [a,b]® be a set of functions. Then, for every 6 € (0, 1)

log2/d
2m

sup
geg

<2R.,(G)+ (b— a)\/

Bon(9(2) = -3 g(0)

holds with probability 1 — ¢ at least, w.r.t. U™ = {2,..., 2™} ~ p™(2).
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¢ Let G C [a,b]® be a set of functions. Then, for every 6 € (0, 1)

log2/d
2m

sup
geg

<2R.,(G)+ (b— a)\/

Bon(9(2) = -3 g(0)

holds with probability 1 — ¢ at least, w.r.t. U™ = {2,..., 2™} ~ p™(2).

¢ For every § € (0,1)

log4/d
2m

< 3R (G, U™) + (b— a)\/

sup
geg

Bop(9(2) = > g0

holds with probability 1 — ¢ at least, w.r.t. U™ = {2,..., 2™} ~ p™(2).
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Example: Rademacher complexity of linear functions @
17/17

¢ Assume that X C R™ and p(«x,y) is such that ||| < R.

¢ Assume that

G = {w(tw,z).y) | [w]: < B}

where 1: R x ) — R is such that f(t) = ¥(t,y) is p-Lipschitz
continuous for all y € V.
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¢ Assume that X C R™ and p(«x,y) is such that ||| < R.

¢ Assume that

G = {w(tw,z).y) | [w]: < B}

where 1: R x ) — R is such that f(t) = ¥(t,y) is p-Lipschitz
continuous for all y € V.

E.g. ¥(t,y) = max{0,1 —ty} and ¥(t) = |t — y| are 1-Lipschitz.
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Example: Rademacher complexity of linear functions @
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¢ Assume that X C R™ and p(«x,y) is such that ||| < R.

¢ Assume that

G = {w(tw,z).y) | [w]: < B}

where 1: R x ) — R is such that f(t) = ¥(t,y) is p-Lipschitz
continuous for all y € V.

E.g. ¥(t,y) = max{0,1 —ty} and ¥(t) = |t — y| are 1-Lipschitz.

® Then, B R
A p
R (G) < ——
9 <=
¢ We can also compute
b= max ¢Y(t,y) and a= min Y(t,y)

te[-BR,BR)] te[—BR,BR]
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0.8-

0.6-

0.4

0.2

0.0+

- p(xry='1)
— p(x,y=+1)




0.8 — p(x,y=-1)




0.8-
—— R(h)

0.0-

§ |



















R(Am)
Rym(hm)




R(Am)
Rym(hm)




R(Am)
Rym(hm)
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