6. Representing Markov models as exponential families

4. Exponential families

Definition 1. An exponential family of distributions for a random variable $X \in \mathcal{X}$ is a parametric model with p.d.

$$p(x) = h(x) \exp[\langle \psi(x), \theta \rangle - A(\theta)]$$

where
- $\psi(x) \in \mathbb{R}^n$ is the sufficient statistic
- $\theta \in \mathbb{R}^n$ is the natural parameter
- $h(x) \in \mathbb{R}_+$ is the base measure
- $A(\theta)$ is the log-partition function (aka cumulant function) given by

$$A(\theta) = \log \int h(x) \exp(\langle \psi(x), \theta \rangle) \, dx$$

Example 1

a) Bernoulli distribution $p(x) = p^x (1-p)^{1-x}, \ x = 0, 1$

$$p(x) = \exp[\langle x \log(p) - (1-p) \rangle]$$

with natural parameter $\theta = \log(p)$

b) Normal distribution $p(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2} (x-\mu)^2\right]$ is an exponential family with

$$h(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} x^2}, \ \psi(x) = x, \ \theta = \mu, \ A(\mu) = \frac{1}{2} \mu^2$$

Definition 2. An exponential family has minimal representation if $A(\theta) \neq \text{const.} + \langle a, \psi(x) \rangle$, for all $x \in \mathcal{X}$. That is, each distribution of the family is represented by a unique parameter vector $\theta \in \mathbb{R}^n$. A non-minimal representation is called overcomplete.
Proposition 1 (principle of maximum entropy)

Let \(X \in \mathcal{X} \) be a random variable and \(\psi(x) \in \mathbb{R}^n \), \(x \in \mathcal{X} \) a statistic. The probability distribution with highest entropy among distributions \(\mathcal{P}(x) \) with \(\mathbb{E}_\mu \psi(x) = \mu \) is a member of the family

\[
\mathcal{P}(x) = \frac{1}{Z} \exp \left[\langle \psi(x), \theta \rangle - A(\theta) \right].
\]

Markov models in exponential form

Starting from Definition 16, Sec 1 \Rightarrow

The joint p.d.f. of a Markov chain model with strictly positive probabilities can be written as

\[
p(s) = p(s_1, s_2, \ldots, s_n) = \frac{1}{Z} \prod_{i=1}^{n} \phi_i(s_{i-1}, s_i) = \frac{1}{Z} \exp \sum_{i=2}^{n} u_i (s_{i-1}, s_i)
\]

Remark 1. The partition function \(Z(\mu) \) is defined by

\[
Z(\mu) = \sum_{s \in \mathcal{X}^n} \exp \sum_{i=2}^{n} u_i (s_{i-1}, s_i)
\]

and can be computed by an algorithm similar to the one discussed in Sec 3. The potentials \(u_i : \mathbb{R}^2 \to \mathbb{R} \) define the model uniquely. The reverse is not true.

Let us consider the underlying chain of the model as a graph and denote its nodes \(i \in \mathcal{V} \) and its edges \(e \in \mathcal{E} \). A sequence of states \(s = (s_1, s_n) \) labels the nodes \(i \in \mathcal{V} \) by labels \(s \in \mathcal{E} \).

We represent edge labelings \(s_e \), \(e \in \mathcal{E} \) by row vectors \(\mathbf{e} \in \mathbb{R}^n \). The matrices \(\Phi(s) = \Phi(s_e) \), and write the joint p.d.f. as

\[
p(s) = \frac{1}{Z} \exp \sum_{e \in \mathcal{E}} \left\langle \Phi_e(s), \mu_e \right\rangle
\]

Where \(\mu_e \) is a \(K \times K \) matrix of the value of the potential \(\Phi_e : \mathbb{R}^2 \to \mathbb{R} \). If the model is homogeneous, i.e., the potentials \(\mu_e \) are the same for all edges \(e \in \mathcal{E} \), we may write

\[
p(s) = \frac{1}{Z} \exp \left(\sum_{e \in \mathcal{E}} \Phi_e(s) \right) = \frac{1}{Z} \exp \left(\Phi(s) \right).
\]
For the general case, we arrive at a similarly compact notation if we define
\[H(s) = (P_{s_1}(s), P_{s_2}(s), \ldots, P_{s_n}(s)), \quad U = (u_{e_1}, \ldots, u_{e_{n-1}}). \]

Remark 2. The EF-representation of Markov models is not minimal. The components of the expected statistic \(E[I(s)] \) for a Markov chain model are the pairwise marginal probabilities on the edges \(e \in E \).

Remark 3. We can extend this to EF-representations of HMMs by introducing statistics for all edges of the model:

\[x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n \]

\[s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_n \]
Given an i.i.d. sample of sequences $\mathcal{T} = \{ s_j \}_{j \in \mathcal{K}^n}$, estimate the model parameters of the Markov model by the maximum likelihood estimator
\[
P^* \in \arg \max_P \prod_{s \in \mathcal{T}} P(s) = \arg \max_P \frac{1}{|\mathcal{T}|} \sum_{s \in \mathcal{T}} \log P(s).
\]

Intuitive answer: P^* is given by $P^*(s_{-1}, s_1) = \hat{P}(s_{-1}, s_1)$, where \hat{P} denotes the frequencies of the corresponding events in \mathcal{T}. Let us prove correctness.

The log-likelihood of \mathcal{T} is
\[
L(u) = \frac{1}{|\mathcal{T}|} \sum_{s \in \mathcal{T}} \left[\langle \Phi(s), u \rangle - \log Z(u) \right]
= \mathbb{E}_T \left[\langle \Phi(s), u \rangle \right] - \log Z(u)
= \langle \Phi^*, u \rangle - \log Z(u)
\]
where $\Phi^* = \mathbb{E}_T \left[\Phi(s) \right]$.

Remark: Observe that all we need to know from the training data \mathcal{T} is $\Phi^* = \mathbb{E}_T \left[\Phi(s) \right]$.

Lemma: The log-partition function $\log Z(u)$ of a Markov model is convex in u.

Proof
\[
\nabla_u \log Z(u) = \frac{1}{Z(u)} \sum_{s \in \mathcal{K}^n} \exp \langle \Phi(s), u \rangle \nabla_u \Phi(s) = \mathbb{E}_{\Phi_u} \left[\nabla_u \Phi(s) \right]
\]

Recall that the components of $\mathbb{E}_{\Phi_u} \left[\Phi(s) \right]$ are the pairwise marginal probs on the model edges.
\[
\nabla_u^2 \log Z(u) = \mathbb{E}_{\Phi_u} \left[\Phi(s) \otimes \Phi(s) \right] - \mathbb{E}_{\Phi_u} \left[\Phi(s) \right] \otimes \mathbb{E}_{\Phi_u} \left[\Phi(s) \right]
= \mathbb{E}_{\Phi_u} \left[(\Phi - \mathbb{E}_{\Phi_u} \Phi) \otimes (\Phi - \mathbb{E}_{\Phi_u} \Phi) \right]
\]
The expectation of a positive semidefinite matrix is p.s.d. $\Rightarrow \log Z(u)$ is convex.
The log-likelihood is concave, and as a consequence, has only global maxima. They are given by:

\[\nabla_u \log L(u) = E_T [q(s)] - E_{p_u} [q(s)] = 0 \]

Hence, the optimiser \(u^* \) defines the model whose pairwise marginal probs coincide with the empirical marginal frequencies in \(T \).

This is easily generalised to learning of HMMs on i.i.d. training data \(T \) which consist of pairs of sequences \((x,s)\). Recall that an HMM is defined as

\[p(x,s) = \prod_{i=1}^n p(x_i|x_{i-1}, s_i) \prod_{i=2}^n p(s_i; s_{i-1}) \]

\[\frac{p(x,s)}{p(x) p(s)} \]

Both model parts are learned independently. The log-likelihood of \(p(x,s) \) further splits into the sum

\[\log p(x,s) = \sum_{i=1}^n \log p(x_i|x_{i-1}, s_i) \]

so that each \(\log p(x_i|x_{i-1}, s_i) \) can be learned independently.