

Artificial Intelligence in Robotics Lecture 9: GT in Robotics

Pavel Rytir Artificial Intelligence Center Department of Computer Science, Faculty of Electrical Engineering Czech Technical University in Prague

Game Theory

- Mathematical framework studying strategies of players in situations where the outcomes of their actions critically depend on the actions performed by the other players.
- Desk games
- Poker

Robotic football

Game Theory applications in robotics

· Various application of game theory

Adversarial vs. Stochastic vs. **Deterministic Environment**

- · Deterministic environment
- . The agent can predict exactly the next state of the environment
- · Stochastic environment
- · Next state comes from a known distribution
- · Adversarial environment
- · Next state comes from an unknown distribution (possibly non
- · Game theory optimizes behavior in adversarial environment.

Game Theory and Robust Optimization

- · We want to count with the worst case scenario.
- The lost person in the woods moves to avoid detection.
- The planned action depletes the battery the most it can.
- Game theory can be used for robust optimization without adversaries.

Pursuit-Evasion games

Pursuit-evasion task taxonomy

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Pursuit evasion problem parameters

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics: A survey. Autonomous Robots, 31(4), 299–316.

Lion and Man game

- · Perfect information capture game
- Rules:
- · Arena is the non-negative quadrant of the plane.
- · Both man and lion have unit speed.
- · Alternating moves.
- · In each round man plays first.
- Each make a move to any point in Eucl. Dist at most 1
- · from current position.
- · Time is discreet. Space is Continuous.
- Goal: Lion wins if he captures man.
- . Man wins if he can keep escaping for inf. time.

Lion and Man game

- Analysis [Sgall 2001]:
 - capture time with discrete steps $O(r^2)$
- · no capture in continuous time
- the lion can get to distance c in time O(rlog(r/c)) [Alonso at al 1992]
- single lion can capture the man in any polygon [Isler et al. 2005]

Homicidal chauffeur game • [Isaacs 1951]; Added movement constraints

- · unconstrained space
- · pedestrian is slow, but highly maneuverable
- · car is faster but less manauverable (Dubin's car)
- · can the car run over the pedestrian?
- The constraints are described by the following differential equations:
- $x'_{M} = u_{M}$, $|u_{M}| \le 1$, $x'_{C} = (v \cos(\theta), v \sin(\theta))$, $\theta' = u_{C}$, $u_{C} \in \{-1,0,1\}$
- It is a special case of Differential games described by the differential equations of the form:
- $x' = f(x, u_1(t), u_2(t)), L_i(u_1, u_2) = \int_{-\infty}^{\infty} g_i(x(t), u_1(t), u_2(t))dt$
- · These equations are generally analytically intractable

Incremental sampling based method

- S. Karaman, E. Frazzoli: Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games, 2011.
- · 1 evader, several pursuers
- · Open-loop evader strategy (for simplicity)
- · Stackelberg equilibrium

- the evader picks and announces her trajectory
- · the pursuers select trajectory afterwards
- · Heavily based on RRT* algorithm

Incremental sampling based method

- Pursuit-Evasion Algorithm
- Initialize evader's and pursuer's trees T_e and T_p with starting vertex.
- $\bullet \quad T_e, n_{e,new} \leftarrow Grow(T_e) \text{ [step from RRT}^{\star}]$
- If $\{n_p \in T_p : dist(n_{e,new}, n_p) \le f(i) \land time(n_p) \le time(n_{e,ew})\} \neq \emptyset$
- $\bullet \quad \text{Then delete } n_{e, new} \text{ from } T_e$

For efficiency pick

- $\bullet \ \, T_p, n_{p,new} \leftarrow Grow(T_p) \, [\mathsf{step} \ \mathsf{from} \ \mathsf{RRT}^\star]$ • Let $C = \{n_e \in T_e : dist(n_e, n_{p,new}) \le f(i) \land time(n_{p,new}) \le time(n_e)\}$
- $\bullet \ \ \mathsf{Delete} \ C \cup \mathit{descendants}(C) \ \mathsf{from} \ T_e$

Normal Form Games

- . The normal form, also known as the strategic form, is the most familiar representation of strategic interactions in game theory.
- Most other game theoretic frameworks could be reduced to the normal form (of very
- . Definition: A (finite, n-person) normal form game is a tuple (N,A,u) where
- N = (1, ..., n) is a finite set of players
- $A = A_1 \times ... \times A_n$, where A_i is a finite set of actions available to player i. Each vector $a=(a_1,\ldots,a_n)\in A$ is called an action profile.
- $u=(u_1,\ldots,u_n)$ where $u_i:A\mapsto\mathbb{R}$ is a real valued utility (payoff) function of player i.
- · A natural way to represent games is an n-dimensional matrix(tensor).

Prisoner's Dilemma

- Two prisoners. Each can either cooperate (C) with other prisoner during an interrogation or defect (D)
- · What is the optimal strategy for them?
- · The best outcome is when both cooperate.
- · But they will usually both defect.

-4,0-1, -1

 $D \mid 0, -4$ -3, -3

D

Pareto optimality

- Pareto domination. Strategy profile s Pareto dominates strategy profile s' if for all i ∈ N, u_i(s) ≥ u_i(s'), and there exists some j ∈ N for which u_i(s) > u_i(s').
- Strategy profile s is Pareto optimal (Pareto efficient), if there
 is no another strategy profile s' ∈ S that Pareto dominates s.

	C	D
C	(-1, -1)	-4,0
D	0, -4	-3, -3

19

Nash equilibrium

Best response. Player i's best response to the strategy profile of other players s_{-i} is a strategy s_i* ∈ S_i such that u_i(s_i*, s_{-i}) ≥ u_i(s_i, s_{-i}) for all strategies s_i ∈ S_i.

Nash equilibrium

• Nash equilibrium. A strategy profile $s=(s_1,\ldots,s_n)$ is a Nash equilibrium if, for all players i, s_i is a best response to s_{-i} .

21

Mixed strategy

	Rock	Paper	Scissors
Rock	0,0	-1, 1	1, -1
Paper	1, -1	0,0	-1, 1
cissors	-1, 1	1, -1	0,0

Figure 3.7: Rock, Paper, Scissors game.

Mixed strategy

- · Mixed strategy.
- Let X be a set. Let $\Pi(X)$ be the set of all probabilistic distributions over X.
- The set of all mixed strategies for player i is $S_i = \Pi(A_i)$.
- · Expected utility of a mixed strategy.
- The expected utility u_i for player i of the mixed strategy profile $s=(s_1,\ldots,s_n)$ is defined as: $u_i(s)=\sum u_i(a)\prod^n s_j(a_j)$

23

Finding Nash equilibria

- Theorem (Nash, 1951) Every game with a finite number of players and action profiles has at least one Nash equilibrium.
- A two players game is zero sum if for each strategy profile $a \in A_1 \times A_2$ it holds $u_1(a) + u_2(a) = 0$
- Nash equilibrium of two players zero sum game can be computed as a linear program

$$\begin{array}{ll} \text{minimize} & U_1^* \\ \text{subject to} & \sum_{k \in A_2} u_1(a_1^j, a_2^k) \cdot s_2^k \leq U_1^* \\ & \sum_{k \in A_2} s_2^k = 1 \\ & s_2^k \geq 0 \end{array} \qquad \forall k \in A_2$$

 $u_1(\,.\,)$ are constants. s_2 and U_1^* are variables.

24

Cops and robbers game

- Map is represented as a graph G = (V, E)
- · Cops and robbers are in vertices.
- Alternating moves along edges.
- · Perfect information game.
- . Cops win if they step at the same vertex as the robber.
- · Robbers win if they can keep escaping for infinite time.
- Cop number of a graph is the minimum number of cops to guarantee capture of the robber regardless of their initial positions.

Cops and robbers game

- Let v be a vertex. Neighborhood of v is: $N(v) = \{u \in V : (u, v) \in E\}$
- Marking algorithm.
- It determines who wins and provides strategy
- Single cop and robber
- 1. For all $v \in V$ mark state (v, v) [e.g. add tuple (v, v) into a hashset]
- 2. For all unmarked (c, r)
- If $\forall r' \in N(r) \exists c' \in N(c)$ such that (c',r') is marked, then mark (c,r)
- . 3. If there are new marks, go to 2.
- If there is an unmarked state, the robber wins.
- If there is none. The cop strategy follows from the marking order.

* 2

Cops and robbers game

- Marking algorithm can be generalized to k cops. It uses tuples $(c_1,\ldots,c_k,r).$
- Time complexity of marking algorithm for k cops is $O(2^{n(k+1)})$.
- Determining whether k cops with a given locations can capture a robber on a given undirected graph is EXPTIME-complete [Goldstein and Reingold 1995].
- The cop number of trees and cliques is one.
- The cop number on planar graphs is at most three [Aigner and Fromme 1984].

27

Cops and robbers game

- · Simultaneous moves
- · No deterministic strategy
- · Optimal strategy is randomized

28

Stochastic (Markov) games

N is the set of playersS is the set of states (games)

hange letter S to something else. onfuses with strategy set

 $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions of player i

 $P: S \times A \times S \rightarrow [0,1]$ is the transition probability function $R = r_1, ..., r_n$, where $r_i: S \times A \rightarrow \mathbb{R}$ is immediate payoff for player i

Stochastic (Markov) games

Markovian policy: $\sigma_i: S \to \Delta(A)$

Objectives

Discounted payoff: $\sum_{t=0}^{\infty} \gamma^t r_l(s_t, a_t), \gamma \in [0,1)$ Mean payoff: $\lim_{t\to\infty} \frac{1}{t} \sum_{t=0}^T r_l(s_t, a_t)$ Reachability: $P(reach(G)), G \subseteq S$

Finite vs. infinite horizon

Value iteration in stochastic games

Adaptation of algorithm from Markov decision processes (MDP)

For zero-sum, discounted, infinite horizon stochastic games

$$\begin{aligned} \forall s \in S \text{ initialize } v(s) \text{ arbitrarily (e.g., } v(s) = 0) \\ \text{until } v \text{ converges} \\ \text{for all } s \in S \\ \text{ for all } (a_1, a_2) \in A(s) \\ & Q(a_1, a_2) = r(s, a_1, a_2) + \gamma \sum_{v \in S} P(s'|s, a_1, a_2) v(s') \\ & v(s) = \max_{v} \min_{v} xQv \end{aligned}$$

Converges to optimum if each state is updated infinitely often

the state to update can be selected (pseudo)randomly

3

Pursuit evasion as SG

N = (e, p) is the set of players

 $S=\left(v_e,\ v_{p_1},...,v_{p_n}
ight)\in V^{n+1}\cup T$ is the set of states $A=A_e\times A_p$, where $A_e=E,A_p=E^n$ is the set of actions $P\colon S\times A\times S\to [0,1]$ is deterministic movement along the edges $R=r_e,r_p$, where $r_e=-r_p$ is one if the evader is captured

32

Summary

PEGs studied in various assumptions

Simplest cases can be solved analytically

More complex cases have problem-specific algorithms

Even more complex cases best handled by generic AI methods

33

Resources

Game theory basics

Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. [Sections 3.2, 4.1, 6.3] http://www.masfoundations.org

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. Machine Learning Proceedings 1994, 157–163.

Pursuit-evasion games

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile robotics: A survey, Autonomous Robots, 31(4), 299–316.

Sgall J. (2001). Solution of David Gale's lion and man problem. Theoretical Computer Science. 259(1-2):663-70.

Homicidal chauffeur game: http://sector3.imm.uran.ru/poland2008patsko/index.html

S. Karaman, E. Frazzoli. Incremental Sampling-Based Algorithms for a Class of Pursuit-Evasion Games, 2011.