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Game Theory /‘%
* Mathematical framework studying strategies of players in

situations where the outcomes of their actions critically depend
on the actions performed by the other players._

 Desk games @
* Poker -

* Cyber security ¢ Auctions

\
=

* Robotic football * Security

Game Theory applications in ﬂﬁf
robotics

Various application of game theory

Adversarial vs. Stochastic vs. W
Deterministic Environment

* Deterministic environment

* The agent can predict exactly the next state of the environment
* Stochastic environment

* Next state comes from a known distribution
¢ Adversarial environment

* Next state comes from an unknown distribution (possibly non
stationary)

* Game theory optimizes behavior in adversarial environment.
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Game Theory and Robust W
Optimization

* We want to count with the worst case scenario.
* The lost person in the woods moves to avoid detection.
* The planned action depletes the battery the most it can.

* Game theory can be used for robust optimization without
adversaries.

Pursuit-evasion task taxonomy /@?

Target Management

Target previously pointed out ?

Require multiple or single

Involve mobile or fixed sensors ?
L e or i point of view per target ?

Multiple
Viewpoints

Mo Seach

Provi

Cyelic task?

Yes

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760.
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Pursuit evasion problem /W
parameters

Single target

False alarms Known prior distribution
Faise contacts LFalse positive erors

False negative errors_ Zmperfect detection,

Type Adversarial
Non- reactive /

Perfect detection

Finite range
Line- o- Sight)

Random walk
_Markovian
Speed

/ - Unbounded

(rurning angle

CIUmRESREL, gounded
Unbounded

Chung, T. H., Hollinger, G. A, & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics: A survey. Autonomous Robots, 31(4), 299-316.
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Lion and Man game /%

Perfect information capture game

* Rules: k
* Arena is the non-negative quadrant of the plane.
* Both man and lion have unit speed.
* Alternating moves. /
¢ In each round man plays first. ‘M

* Each make a move to any point in Eucl. Dist at most 1
« from current position.

Time is discreet. Space is Continuous.

Goal: Lion wins if he captures man.

Man wins if he can keep escaping for inf. time.
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Lion and Man game

« Let Ly = [yl and My = [xj.yj] be iital positons.
« Weither xj 2 5 0r yj = Yy then man wins.
« I both xj < 3 and ¥ < ¥, the lion wins. Proof:

« Strategy for ion [Sgall 2001]

« INIT:Find point G on ine ML such that:
+ Lyisinsido MyC and the circl with centor G
« andradius r = |CL intrsscts both axes.

« The point C remains the same during the game.
« INEACH ROUND: Let M and L denote positions at beginning|

+ Lot M’ denote point where man moves.
« 1 IMLI < 1. on moves to M’ and wins.

« Else Lions moves to L on the line M'C such that | L'L| = |

« The distance between the lion and man decreases.

+ Sinco the timo s discree, he aigorthm converges afer frito nymber of stops.
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Lion and Man game

* Analysis [Sgall 2001]:
capture time with discrete steps O(1%)

no capture in continuous time

the lion can get to distance c in time O(rlog(r/c)) [Alonso at al
1992]

single lion can capture the man in any polygon [Isler et al. 2005]

Homicidal chauffeur game

« [Isaacs 1951]; Added movement constraints
« unconstrained space
« pedestrian is slow, but highly maneuverable ¢ M
« caris faster, but less maneuverable (Dubin’s car)
« can the car run over the pedestrian?

+ The constraints are described by the following differential equations:

o Xy =ty gyl < 1,50 = (veos(O), vsin(0)), 0’ = u,, u, € (=1,0,1}

« Itis a special case of Differential games described by the differential equations of the form:
T

o X =L (0, un(0), Ly ) = J 8ix(), uy (1), uy(D)dt
=0

« These equations are generally analytically intractable.
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Incremental sampling based /‘%
method

* S. Karaman, E. Frazzoli: Incremental Sampling-Based Algorithms for
a Class of Pursuit-Evasion Games, 2011.

* 1 evader, several pursuers

T
N
* Open-loop evader strategy (for simplicity) & &
=R
I & @ ¢
* Stackelberg equilibrium EY L)
Image by MIT OpenCourseWare

* the evader picks and announces her trajectory
* the pursuers select trajectory afterwards

* Heavily based on RRT* algorithm
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Incremental sampling based
method

Pursuit-Evasion Algorithm

e

Initialize evader’s and pursuer’s trees T, and Tp with starting vertex.

Fori=1toNdo

o T 1y e, < Grow(T,) [step from RRT*]

If {n,7 E€T,: dist(n, e, n,) < JIOXN time(n,) < time(n, )} # @

« Then delete 1, from 7, For efficiency pick

e.new

o T

o Tpnew < Gmw(Tp) [step from RRT*] If(i) = M

IT|

Let C = {n, € T, : dist(n,, n, .,,) < f(D) A time(n,, ,,,) < time(n,)}

Delete C U descendants(C) from T,
14

iteration 5000 iteration 10000
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Normal Form Games

The normal form, also known as the strategic form, is the most familiar
T ion of strategic il { in game theory.

Most other game theoretic frameworks could be reduced to the normal form (of very
big size).

Definition: A (finite, n-person) normal form game is a tuple (N,A,u) where
o N=(l,...,n)is afinite set of players

« A=A} X... XA, where A; is afinite set of actions available to player i. Each
vector a = (ay, ...,a,) € A'is called an action profile.

= (uy, ...,u,) where u; : A — R is a real valued utility (payoff) function of player i.

A natural way to represent games is an n-dimensional matrix(tensor).

Prisoner’s Dilemma

fe

* Two prisoners. Each can either cooperate (C) with other

prisoner during an interrogation or defect (D)

* What is the optimal strategy for them?

* The best outcome is when both cooperate. ¢ b
C | -1,-1 | —4,0

¢ But they will usually both defect. ' ’
D | 0,4 -3,-3




Pareto optimality

fe

Pareto domination. Strategy profile s Pareto dominates
strategy profile s'if for all i € N, u(s) > u,(s"), and there

exists some j € N for which uj(s) > uj(s’).

Strategy profile s is Pareto optimal (Pareto efficient), if there
is no another strategy profile s’ € S that Pareto dominates s.

Nash equilibrium

fe

* Best response. Player i’s best response to the strategy
profile of other players s_; is a strategy sl,* € §; such that

ui(s¥,5_;) > ugs;, s_;) for all strategies s; € S;.

C *PZBR

fere

Nash equilibrium

« Nash equilibrium. A strategy profile s = (s, ..., s,) isa
Nash equilibrium if, for all players i, s; is a best response to
S_j

C D

C | -1,-1 —4,0

c D
D | o0-4 (—3, —3)
C |[-1,-1)] —-4,0 P1 * C|-1,-1 | —4,0 N—
D|o0-4 |-3-3 D|o0-4 | -3-3
19 20 21
%‘%‘? gg‘,% Finding Nash equilibria q??}
Mixed strategy / F Mixed strategy / J'g / J'§
* Theorem (Nash, 1951) Every game with a finite number of players and action profiles
has at least one Nash equilibrium.
Rock Paper Scissors * Mixed strategy.  Atwo players game is zero sum if for each strategy profile @ € A; X A, it holds
“seissors ™ _— uy(a) + up(a) =0
Rock 0,0 -1,1 1,-1 oo * Let X be a set. Let [1(X) be the set of all probabilistic
% @ distributions over X.  Nash equilibrium of two players zero sum game can be computed as a linear program
P: 1,-1 0,0 -1,1 : o inimi *
aper ’ ! ’ K“)@ @ q,é"/ « The set of all mixed strategies for player i is S; = IT(A,). minimize U7
. ) subject to Z ui(ai,ab) - sk < Uy Vj € A
Scissors | —1,1 L-1 0,0 « Expected utility of a mixed strategy. keAs
. . Z si=1
Figure 3.7: Rock, Paper, Scissors game. « The expected utility u; for player i of the mixed strategy profile P
n
s£>0 Vk € Ay

§ = (8, ...,5,) is defined as: u;(s) = z u,-(a)Hsj(af)
j=1

agA

u,(.) are constants. s, and U} are variables.
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Cops and robbers game

Map is represented as a graph G = (V, E)
Cops and robbers are in vertices.
Alternating moves along edges.

Perfect information game.

Cops win if they step at the same vertex as the robber.

Robbers win if they can keep escaping for infinite time.

Cop number of a graph is the minimum number of cops to guarantee
capture of the robber regardless of their initial positions.
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Cops and robbers game

Let v be a vertex. Neighborhood of vis: N(v) = {u € V: (u.v) € E}
Marking algorithm.

It determines who wins and provides strategy

Single cop and robber

1. Forall v € V mark state (v, v) [e.g. add tuple (v, v) into a hashset ]

2. For all unmarked (c, r)

« I V7 € N(r) 3¢’ € N(c) such that (', ') is marked, then mark (c. r)

3. If there are new marks, go to 2.
If there is an unmarked state, the robber wins.

If there is none. The cop strategy follows from the marking order.

2

fe&

fe&

Marking algorithm can be generalized to k cops. It uses tuples
(1 evns G 7).

Cops and robbers game

Time complexity of marking algorithm for k cops is O(2"**+D).

Determining whether k cops with a given locations can capture a

robber on a given undirected graph is EXPTIME-complete
[Goldstein and Reingold 1995].

The cop number of trees and cliques is one.

The cop number on planar graphs is at most three [Aigner and
Fromme 1984].




Cops and robbers game /%

< &

¢ Simultaneous moves
* No deterministic strategy

* Optimal strategy is randomized

Stochastic (Markov) aames W

leter S to sometring ise.

N is the set of players Chnri i ssegy ot

S is the set of states (games)

A= A; x - x Ay, where 4; is the set of actions of player i

P:Sx Ax S - [0,1] is the transition probability function

R =1y,..,1m,, where r;: § X A - R is immediate payoff for player i
S2

050 |1

S1

1]0 P(5j|5i'(‘11,‘12))
01

05| 0

1
\ 5 o|1]|os
5 21
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Stochastic (Markov) games /%

Markovian policy: o;:S = A(A4)

Objectives
Discounted payoff: {2, y‘ri(se, ar),v € [0,1)
Mean payoff: Tliﬁrg%ﬂ‘:url(s,, a)
Reachability: P(reach(G)), G < S

Finite vs. infinite horizon

S2
S1
050 |1
110 PGslsi(as,az))
o1 05| 0
55 01105
2|1

Sy
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Value iteration in stochastic /‘%’?ﬁé
games

Adaptation of algorithm from Markov decision processes (MDP)

For zero-sum, discounted, infinite horizon stochastic games
Vs € S initialize v(s) arbitrarily (e.g., v(s) = 0)

until v converges
forallses
for all (a,,a;) € A(s)
Q(ay,ay) =r(s,a5,a) +y Z P(s'|s, ay, az)v(s")
v(s) = maxmin xQy S7ES /I solves the matrix game Q

Converges to optimum if each state is updated infinitely often
the state to update can be selected (pseudo)randomly
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Pursuit evasion as SG /Wg

N = (e,p) is the set of players

S = (Ve, Upys s Vp,) EVPLUT s the set of states

A=A, x Ay, where A, = E, A, = E™ is the set of actions

P:S x Ax S - [0,1] is deterministic movement along the edges

R = 1,7, where r, = —, is one if the evader is captured

Summary /ﬁf‘l%é

PEGs studied in various assumptions
Simplest cases can be solved analytically
More complex cases have problem-specific algorithms

Even more complex cases best handled by generic Al methods
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