/"{5??? o /\i

IN PRAGUE CENTER

Artificial Intelligence in Robotics
Lecture 08: GT in Robotics

Viliam Lisy
Artificial Intelligence Center

Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

DEPARTMENT OF

Poznejte katedru poéitacll  compuTeR
SCIENCE

Come and meet departement of gy o
compuier science /ﬁ\if‘:% ey

Centrum umélé inteligence laboratof datové analyzy a
laboratof softwarouého testovani vas zvou na predvanotni
setkani, uréené pro studenty bakalifskyeh a magisterskych pro-
gramii [ 01, Kyr, SIT).

0 tom jakeé to je pracovat na katedfe vam povi:

WICHAL PECHOUGER 1RH HYKL NRT BERMAK IR SEBEK
Vedouc absolvent, takladatel FhD. shuent, Stflstay absoluent soutasny
katedry poéitagil, starwoy EGooglu Iektor

KN:E - 301,16:15, 11.12.2018

CENTER

Game Theory

Mathematical framework studying strategies of players in
situations where the outcomes of their actions critically depend
on the actions performed by the other players.

Robotic GT Applications




Adversarial vs. Stochastic '}
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Deterministic environment
The agent can be predict next state of the environment exactly

Stochastic environment
Next state of the environment comes from a known distribution

Adversarial environment

The next state of the environment comes from an unknown
(possibly nonstationary) distribution

Game theory is optimizes behavior in adversarial environments

GT and Robust Optimization
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It is sometimes useful to model unknown environmental
variables as chosen by the adversary

the position of the robot is the worst consistent with observations
the planned action depletes the battery the most that it can
the lost person in the woods moves to avoid detection

GT can be used for robust optimization without adversaries

Normal form game

N is the set of players
A; is the set of actions (pure strategies) of playeri € N
ri:[ljen 4j — R is immediate payoff for player i € N
Mixed strategy
o; € A(4;) is a probability distribution over actions
we naturally extend r; mixed strategies as the expected value

Best response
of player i to strategy profile of other players o_; is

BR(o_;) = arg maxr;(0;,0_;)
O'L-EA(AL')

Nash equilibrium
Strategy profile ¢* is a NE, iff Vi € N : g € BR(0%;)

Normal form game

Player 2
Column player
Minimizer
r P s
R/ 05 0 I
Player 1
Row player P | 0.5 0
Maximizer ]
S| 0 I 0.5
0-sum game

Pure strategy, mixed strategy, Nash equilibrium, game value




Computing NE

LP for computing Nash equilibrium of 0-sum normal form game

max U
U1,U
s.t. Z o1(ar(ay,a,) 22U  Va, €A,
a,€A,
z o1(a) =1
aleAl
O'l(al) =0 Va1 € A1

Pursuit-Evasion Games
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Task Taxonomy

Target Management

Target previously pointed out ?

Target Tracking

Target Detection

Require multiple or single

Involve mobile or fixed sensors ? . .
point of view per target ?

Mobile Fixed Multiple Single
Viewpoints Viewpoint
|M0bile Search| |Static Surveillance |
\
Provide any guarantee ? | Target Localization | |Monitoring|

Worst-case None Multiple or single target ?

Probabilistic

Multiple Targets Single Target

| Capture | | Hunting |

[ Probabilistic Search]
{

Cyclic task? [0bservation] [ Foliowing

Yes

Patrolling

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760.
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Problem Parameters

Homogeneous
Heterogeneous

Multiple targets
Single target

Multiple searchers

Single searcher

Number of searchers Number of targets

Transit costs

Bounded speed Adversarial placement

Stationary

Constrained Search
earcher motion . Target
False alarms Unconstrained earcher =
False positive erors . Random placement|
False contacts Sensor mode arget motion

Known prior distribution

Uniform distribution

False negative errors Imperfect detection ]
o Perfect detection’ Mobile , TyPe Adversarial g ndom walk
Finite range Agility Non-reactive |/ parkovian
Line- of- Sight Finite graph Speed Bounded
- Unbounded
Infinit h Envi t i
Polygona = "];:J:j;:: Discrete ironmen! Turning angle Bounded
Convex Unbounded Continuous Unbounded
Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics: A survey. Autonomous Robots, 31(4), 299-316.
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Problem Parameters
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Homogeneous Multiple searchers

Single target

Single searcher

Number of targets }

Adversarial

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in
mobile robotics: A survey. Autonomous Robots, 31(4), 299-316.
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PERFECT INFORMATION CAPTURE

Lion and man game

arena with radius r

man and lion have unit speed
alternating moves

can lion always capture the man?

Algorithm for the lion
start from the center
stay on the radius that passes the man
move as close to the man as possible

Analysis
capture time with discrete steps 0(r?) [Sgall 2001]

no capture in continuous time
the lion can get to distance c in time O(rlogg) [Alonso at al 1992]

single lion can capture the man in any polygon [Isler et al. 2005]

Modelling movement constraints

Homicidal chauffeur game [Isaacs 1951]
unconstraint space
pedestrian is slow, but highly maneuverable C
car is faster, but less maneuverable (Dubin’s car)

can the car run over the pedestrian?

Xy = Uy, |luyl <1; % = (vcosO,vsind); 6 =uc, uc € {—1,0,1}

Differential games

x = f(x,uy(8),uz(0)), LiCug, up) = ftT=0 9i(x(), u1 (1), uz (1)) dt
analytic solution of partial differential equation (gets intractable quickly)
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Incremental Sampling-based Method
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S. Karaman, E. Frazzoli: Incremental Sampling-Based
Algorithms for a Class of Pursuit-Evasion Games, 2011.

1 evader, several pursuers

Open-loop evader strategy (for simplicity)

Stackelberg equilibrium Ty
the evader picks and announces her trajectory
the pursuers select trajectory afterwards

Heavily based on RRT* algorithm

Incremental Sampling-based Method
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Algorithm
Initialize evader’s and pursuers’ trees T, and T,
Fori=1toN do
ne,new < GrOW(Te)

if {n, € T,:dist(ne new np) < f(i) & time(n,) < time(ne pew)} # @ then
delete ng new

ny, « Grow(T )
Cp;w{v;le €T,: disl?(ne, np,new) <fl)& time(np,new) < time(ng)}
delete C U descendants(C, T,)

For computational efficiency pick f (i) = —10;‘3T|Te|
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Discretization-based approaches
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Open-loop strategies are very restrictive

Closed-loop strategies are generally intractable

Cops and robbers game

Graph G = (V,E)
Cops and robbers in vertices
Alternating moves along edges

Perfect information

Goal: step on robber’s location

Cop number: Minimum number of cops necessary to guarantee
capture or the robber regardless of their initial location.

Cops and robbers game

Neighborhood N(v) = {u € V : (v,u) € E}

Marking algorithm (for single cop and robber):
1. For all v € VV, mark state (v, v)

2. For all unmarked states (c,r)
If vr' € N(r)3c’ € N(c) such that (¢, r") is marked, then mark (c,r)

3. If there are new marks, go to 2.

If there is an unmarked state, robber wins
If there is none, the cop’s strategy results from the marking order

(more in: Chung at al. 2011)
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Cops and robbers game

Time complexity of marking algorithm for k cops is 0(n?*+1),

Determining whether k cops with a given locations can capture a
robber on a given undirected graph is EXPTIME-complete
[Goldstein and Reingold 1995].

The cop number of trees and cliques is one.

The cop number on planar graphs is at most three [Aigner and
Fromme 1984].
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Cops and robbers game

Simultaneous moves
No deterministic strategy

Optimal strategy is randomized
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Stochastic (Markov) Games
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N is the set of players

S is the set of states (games)

A= A; x--x Ay, where 4; is the set of actions of player i
P:S x A xS — [0,1] is the transition probability function

R =1y, ..,1, Where r;: S X A - R is immediate payoff for player i

S2

S1

110 P(sjlsi, (a1, a2))

1105 0
0 1
\ 0|1]05
S3
2

1

050 | 1

0 0|1
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Stochastic (Markov) Games

Markovian policy: ¢;:S = A(A)

Objectives

Discounted payoff: Y12,v'ri(ss, a.),y € [0,1)

Mean payoff: Tli_r)r(}o%Z{zori (S, ap)

Reachability: P(reach(G)), G <SS

Finite vs. infinite horizon

S1

1 0 P(Sjlsir (a1,a3))

S2
05| 0| 1
11050
0| 1]05
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Value lteration in SG
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Adaptation of algorithm from Markov decision processes (MDP)

For zero-sum, discounted, infinite horizon stochastic games
Vs € S initialize v(s) arbitrarily (e.g., v(s) = 0)

until v converges

foralls €S
for all (ay,a,) € A(s)

Q(ar,a;) = r(s,an,2) +7 ) P(s'ls,a1,@)v(s)
v(s) = max min xQy s'€S [/ solves the matrix game Q
x oy

Converges to optimum if each state is updated infinitely often
the state to update can be selected (pseudo)randomly
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Pursuit Evasion as SG

N = (e,p) is the set of players

S = (Ve, Vp,, - vp, ) EVMTLUT s the set of states

A=A, XAy, where A, = E,A, = E" is the set of actions

P:Sx AxS — [0,1] is deterministic movement along the edges

R =r1,,1,, Wwhere r, = —r, is one if the evader is captured
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Summary

PEGs studied in various assumptions
Simplest cases can be solved analytically
More complex cases have problem-specific algorithms

Even more complex cases best handled by generic Al methods
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Resources

Game theory basics

Yoav Shoham, Kevin Leyton-Brown: Multiagent Systems: Algorithmic, Game-Theoretic,
and Logical Foundations. [Sections 3.2, 4.1, 6.3] http://www.masfoundations.org

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning. Machine Learning Proceedings 1994, 157—-163.
Pursuit-evasion games

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and
survey. Autonomous Robots, 40(4), 729-760.

Chung, T. H., Hollinger, G. A., & Isler, V. (2011). Search and pursuit-evasion in mobile
robotics: A survey. Autonomous Robots, 31(4), 299-316.

Sgall J. (2001). Solution of David Gale's lion and man problem. Theoretical Computer
Science. 259(1-2):663-70.

Homicidal chauffeur game: http://sector3.imm.uran.ru/poland2008patsko/index.html

S. Karaman, E. Frazzoli. Incremental Sampling-Based Algorithms for a Class of Pursuit-
Evasion Games, 2011.
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