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Traditional autonomy:
Understanding of space

Self-localisation, motion planning and navigation

focus on metric scale, accuracy, consistency
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Traditional autonomy:
Understanding of space

After a few hours ...

lack of focus on robustness
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Long-term autonomous navigation

Target: 24/7 visual autonomous navigation
Environment: outdoor, forests, urban parks
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Long-term operation: Environment changes

Oxford  Churchill et al.: place-specific ‘experiences’
CMU Biswas et al.: static/dynamic separation
ETH Biirki et al.: map summarisation

QuUT Stinderhauf et al.: appearance prediction
CTU Krajnik et al. spatio-temporal models

Kunze et al.: Artificial intelligence for long-term robot autonomy: a survey. IEEE RAL, 2018 5/24
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Visual Navigation

Standard pipeline: Problems:
1. Extract image features, 1. Feature deficiency,
2. find correspondences, 2. environment change,
3. determine pose, 3. precision, complexity,
4. add new feats to map, 4. feature persistence,
5. calculate movement. 5. real-time issues.

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010
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Visual Navigation
Standard pipeline:

Extract image features,
find correspondences,
determine pose,

add new feats to map,
calculate movement.
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Problems:

Feature deficiency,
environment change,
precision, complexity,
feature persistence,
real-time issues.

Krajnik, Faigl, Vonasek et al.:

Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 6/24



Tom Krajnik Visual Navigation in Changing Outdoor Environments AlIC@CTU

Teach and repeat navigation

manually guide the robot along a given path,

robot stores its odometry,

robot stores image features,

robot replays its odometry,

e while correcting its heading according to its visual memory.

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 7124
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Teach and repeat navigation

Image sequence indexed by position pics/along the learned path

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 8/24
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Teach and repeat navigation

Image sequence indexed by position along the learned path

Image perceived by the robot during autonomous repeat

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 8/24
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Teach and repeat navigation

Image sequence recorded during learning phase

Image perceived by the robot during autonomous repeat

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 8/24
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Teach and repeat navigation

Image sequence recorded during learning phase

Image perceived by the robot during autonomous repeat
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Teach and repeat navigation

Image sequence recorded during learning phase

Image perceived by the robot during autonomous repeat
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Teach and repeat navigation

Images stored in the 1
e I f

ocal maps

. 13 |

Image perceived by the robot during autonomous repeat

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 8/24
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Teach and repeat navigation

Image sequence recorded during learning phase

n
==

Image perceived by the robot during autonomous repeat

Krajnik, Faigl, Vonasek et al.: Simple, Yet Stable Bearing only Navigation. Journal of Field Robotics, 2010 8/24
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Not everything changes: learning stable features

Image sequence recorded during learning phase

Image perceived by the robot during autonomous repeat

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 9/24
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Not everything changes: learning stable features

Learned images

Typical features
are robust to :

— viewpoint,

— scale,

— rotation,

— illumination.

Long—term teach—
T&R requires
robustness to :

— illumination,
— seasonal factors

Perceived images

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 9/24
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Not everything changes: learning stable features
n-D vector describing local brightness gradients

e SIFT - typically best-performing, baseline method
e SURF - faster approximation of SIFT
Binary string describing brightness difference
e BRIEF - binary comparisons, low viewpoint invariance,
* ORB - scale and rotation invariant BRIEF
e BRISK - scale and rotation invariant, symmetric positions
¢ GRIEF - BRIEF with comparison positions trained
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Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 10/24
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Not everything changes: learning stable features

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 11/24
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features
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Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 11/24
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features

G, £ 'e‘

00011-

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017 11/24
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Not everything changes: learning stable features
BRIEF Binary Robust Independent Elementary Features
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Not everything changes: learning stable features
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Not everything changes: learning stable features
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Not everything changes: learning stable features
Idea: rank the individual comparisons
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Not everything changes: learning stable features
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000000
010000
111000
000111

100000

—++++t 110000

~=*="" 010010

—————

000111
//;><i +H++++

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017

13/24



Tom Krajnik Visual Navigation in Changing Outdoor Environments AlIC@CTU
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Not everything changes: learning stable features
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Not everything changes: learning stable features
Idea: rank the individual comparisons
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Planetarium dataset
root-up=STFT
up-SURF
" ORB
SpG+CNN ——
STI\S‘!‘B
STAR+GRIEF ——
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Num. of features [hundrets]
root-up-SIFT

Krajnik et al.:

Visual Navigation in Changing Outdoor Environments

Experimental results

The dependence of heading estimation error rate on the number of features extracted.

Michigan dataset
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Not everything changes: learning stable features

Nordland dataset
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Image features for Visual T&R Navigation in Changing Environments. RAS, 2017
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Not everything changes: learning stable features

Idea: Not everything changes, and you can learn persistent
features

Training scheme is described in:
¢ T.Krajnik et al.: Image Features for Visual T&R Navigation
in Changing Environments. RAS 2017.
e H.Nan et al.: Learning Place-And-Time-Dependent Binary
Descriptors for Long-Term Visual Localization. ICRA 2018

All code available at http://github.com/gestom/grief

Krajnik et al.: Image features for Visual T&R Navigation in Changing Environments. RAS, 2017

15/24
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Some changes are gradual, you can adapt your map

Two sources of uncertainty: Map management strategy:
a) localisation, perception - use the oldest map, robust to a)
b) environment change - use the newest map, robust to b)

Halodova et al.: Predictive and adaptive maps for long-term visual navigation. In IROS 2019 16/24
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Some changes are gradual, you can adapt your map

Perform gradual map adaptation
by ranking the map features:

® assign scores to features,

¢ check each feature match for
geometrical consistency,

® increase score if consistent,
e decrease score if inconsistent,
e |eave it not matched,

* remove the worst-scoring
features,

e substitute with new ones.

Halodova et al.: Predictive and adaptive maps for long-term visual navigation. In IROS 2019 17 /24
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Some changes are repetitive, we can learn patterns

Oxford  Churchill et al.: place-specific ‘experiences’
CMU Biswas et al.: static/dynamic separation
ETH Birki et al.: map summarisation

QuUT Stinderhauf et al.: appearance prediction

Krajnik et al.: FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 18/24
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Some changes are repetitive, we can learn patterns

«—— P(traversable)
€—— P(visible)

Master
bedroom

Apartment
center

Master
bathroom
Second
bedroom

P(occupied) p———

p(t) = po
P(open)

Krajnik et al.: FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 19/24
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Some changes are repetitive, we can learn patterns

Master
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Some changes are repetitive, we can learn patterns
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Second
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FreMEn: Frequency Map Enhancement
Continuous observation of an image feature

Static model:
§'(t) matches the observations in 74% of cases

Frequency domain Time domain
T T T T T T

~

()

p(t)

s(t)

TT%TT Tofl”

8 10 Mon Tue Wed Thu Fri Sat Sun
Frequency [1/week] Observation Model Reconstruction
p  =Do

Krajnik et al.: FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 20/ 24
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FreMEn:
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Frequency Map Enhancement

Continuous observation of an image feature

Dynamic model with one periodic process:
§'(t) matches the observations in 80% of cases

Frequency domain

Time domain

()

p(t)

s(t)

OTT%T g

Frequency [1/week]

Krajnik et al.:

LT

FreMEn:

Mon Tue Wed Thu Fri Sat Sun
Observation Model Reconstruction
p(t)=po+  pcos(wt+e,)

Frequency Map Enhancement for Long-Term Robot Aut.... [IEEE-TRO, 2017 20/ 24
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FreMEn: Frequency Map Enhancement
Continuous observation of an image feature

Dynamic model with two periodic processes:
§'(t) matches the observations in 87% of cases

Frequency domain Time domain

()

p(t)

o

OTT?3TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun

Frequency [1/week] Observation

s(t)

Model Reconstruction

2
p(t) =po+ ijCOS(Uth + ;)
j=1

Krajnik et al.: FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 20/ 24
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FreMEn: Frequency Map Enhancement

Continuous observation of an image feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases

Frequency domain

Time domain

r(t)

o

p(t)

s(t)

i

8 Mon Tue Wed Thu Fri Sat Sun
Frequency [1/week] Observation Model Reconstruction
3
p(t) =po+ »_ picos(wit + ;)

Krajnik et al.:

197

j=1

FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 20/ 24
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FreMEn: Frequency Map Enhancement

Continuous observation of an image feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases
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FreMEn: Frequency Map Enhancement
Continuous observation of an image feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases

Frequency domain Time domain
T T T T T T

p(®) ()

TT?@TT Lo "H LI L 1L

0 B 4 6 8 10 Mon Tue Wed Thu
Frequency [1/week] Observation Model

s(t)

Reconstruction

5
p(t) =po+ ijcos(wjt + ¢j)
=1
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Frequency Map Enhanement principle

Frequency Map Enhancement (FreMEn)

Represents uncertainty of binary environment states in the frequency domain.
Can predict environment appearance at a given time.

Spectral domain

Feature presence detection ——
Feature presence probability ——
{ Feature presence prediction

T T T T
Selected coefficients

learning ¢—}— prediction

n

p(t) = po+ > _ pjcos(w;t + ¢;)
j=1

4 5 6 7 8 9 [days]

Krajnik, Fentanes, Cielniak, Dondrup, Duckett: A frequency-based approach to long-term robotic mapping, ICRA 2014

0 1 2 3 4 3 6 7 8
Frequency [1/week]

Krajnik et al.: FreMEn: Frequency Map Enhancement for Long-Term Robot Aut.... IEEE-TRO, 2017 21/24
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Some changes are consistent, and indicate objects

Form an accumulator

Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19 22/24
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Some changes are consistent, and indicate objects

Find local maxima

Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19 22/24
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Some changes are consistent, and indicate objects

Reproject to images

|
=
=
=
=
=
=

Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19 22/24
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Some changes are consistent, and indicate objects

Morphological ops.

Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19 22/24
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Some changes are consistent, and indicate objects

Feed masks to Mask-RCNN

l

Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19 22/24
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What to remember from the first part of the lecture

Changes are source of valuable information [1,2].

Some changes are:
¢ describable and you can learn robust features [3],
e gradual and you can adapt to then [4],
e repetitive and you can learn their patterns [5],
e consistent and you can use them for auto-annotation [6],

References:

[1] Krajnik et al.: Chronorobotics In IJCRAI 19 download link
[2] Kunze et al.: Atrtificial Intelligence for Long-term Autonomy |IEEE RA-L 19
[3] Krajnik et al.: Image Features for Visual T&R Navigation in Changing Environments RAS 17
[4] Halodova et al.: Predictive and adaptive maps for long-term visual navigation In IROS 19
[5] Krajnik et al.: Fremen: Frequency map enhancement for LTA in changing environments IEEE T-RO 17
[6] Peconkova et al.: Unsupervised Learning of Landmarks for Vis.Nav. ... In PAIR 19

We strongly suggest to read [1] for an overview of the topic.

Videos and papers are available at this link 23/24


https://www.researchgate.net/publication/338411934_CHRONOROBOTICS_Representing_the_structure_of_time_for_service_robots
https://www.researchgate.net/publication/338411934_CHRONOROBOTICS_Representing_the_structure_of_time_for_service_robots
https://drive.google.com/drive/folders/1SubWUqtDuFWQX3HvsjiTMpsG9ITV_HgF?usp=sharing
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What to remember from the first part of the lecture

Changes are source of valuable information [1,2].

Some changes are:
e describable and you can learn robust features [3],
e gradual and you can adapt to then [4],
e repetitive and you can learn their patterns [5],
e consistent and you can use them for auto-annotation [6],

Download:
BearNav system: http://bearnav.eu
GRIEF Image features: http://github.com/gestom/grief
Frequency Map Enhancement: http:/fremen.uk

Videos and papers are available at this link 24 /24
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Traditional autonomy:
Understanding of space

Self-localisation, motion planning and navigation

focus on metric scale, accuracy, consistency

T.Krajnik Chronorobotics 2/27
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Traditional autonomy:
Understanding of space

After a few hours ...

lack of focus on robustness

T.Krajnik Chronorobotics 3/27
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Mid-term autonomy:
Understanding that environment changes

Memorising and suppressing changes:
Oxford  Churchill et al.:  experience-based approach

Orebro Lowry et al.: condition-invariant appearance
CMU Biswas et al.: static/dynamic separation
ETH Blrki et al.: map summarisation

Lowry et al.: Visual Place Recognition: A Survey. IEEE T-RO, 2016 4/27



Krajnik Chronorobotics — Human-centric Spatio-Temporal Models for Service Robots AIC@CTU

Mid-term autonomy:
Understanding that environment changes

Memorising and suppressing changes:
Oxford  Churchill et al.:  experience-based approach

Orebro Lowry et al.: condition-invariant appearance
CMU Biswas et al.: static/dynamic separation
ETH Blirki et al.: map summarisation

Lowry et al.: Visual Place Recognition: A Survey. IEEE T-RO, 2016 5/27
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Long-term autonomy:
Understanding how environment changes

Obtaining information from the changes observed:

long-term operation — observation of changes
observed changes —  spatio-temporal models
spatio-temporal model — prediction of future states

prediction of future states — improved long-term operation

Kunze et al.: Artificial intelligence for long-term robot autonomy: A survey, RAL 2018

6/27
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Towards Spatio-Temporal Domain Modeling

«—— P(traversable)
€—— P(visible)

-

Master
bedroom

Apartment
center

Master
bathroom
Second
bedroom

P(occupied)

p(t) = po
P(open)

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 7127
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Towards Spatio-Temporal Domain Modeling

«—— P(traversable)

Master
bedroom

Apartment
center

Master
bathroom
Second
bedroom

P(occupied) p——
p(t) = po

P(open) _—_ . €—— P(visible)
Environment e

changes

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 7127
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Towards Spatio-Temporal Domain Modeling

Master
bedroom

Apartment
center
«—— P(traversable)

Master
bathroom
Second
bedroom

P(occupied) —p ) n
P p(t) = po + ijcos(wjt + ;) o
P(open) — j=1 «—— P(visible)

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018
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Towards Spatio-Temporal Domain Modeling

¢—— P(traversable)

Master
bedroom

Apartment
center

Master
bathroom
Second
bedroom

P(occupied) —» -
3 p(t) = po +ijcos(wjt+<pj)
P(open) —_ = €—— P(visible)

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018

7127
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Example: Modeling a single state
Week-long model of a single feature

Data gathering:
Establish a binary function of time s(t)

Time domain

()

p(t)

s(t)

Il 1 Il Il
Mon Tue Wed Thu Fri Sat Sun

Observation

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Fourier analysis:
Calculate frequency spectrum of s(t)

Frequency domain Time domain
T T T T T

()

p(t)

s(t)

OTT??TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun

Frequency [1/week] Observation

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Component selection:
Select the most prominent spectral component(s)

Frequency domain Time domain
T T T T T

r(t)

p(

TT?@TT [of) “HI LI L JTL

0 2 4 6 8 10 Mon Tue Wed Thu

Frequency [1/week] Observation

s(t)

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Static model with one component with zero frequency:
§'(t) matches the observations in 74% of cases

Frequency domain Time domain
T T T T T T

~

()

p(t)

s(t)

OTT??TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun
Frequency [1/week] Observation Model Reconstruction
p  =Do

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27



Krajnik Chronorobotics — Human-centric Spatio-Temporal Models for Service Robots AIC@CTU

Example: Modeling a single state
Week-long model of a single feature

Dynamic model with one periodic process:
§'(t) matches the observations in 80% of cases

Frequency domain Time domain

\
()

OTT??TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun

Frequency [1/week] Observation

p(t)

s(t)

Model Reconstruction

p(t)=po+  pcos(wt+)

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Dynamic model with two periodic processes:
§'(t) matches the observations in 87% of cases

Frequency domain Time domain

()

p(t)

o

OTT?3TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun

Frequency [1/week] Observation

s(t)

Model Reconstruction

2
p(t) =po+ ijCOS(Uth + ;)
j=1

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases

Frequency domain Time domain

REREVAVAVAAVAVAVN
OTT?3TI Tog "IN L NI L JIL

8 10 Mon Tue Wed Thu Fri Sat Sun

\
()

p(t)

s(t)

Frequency [1/week] Observation Model Reconstruction

3
p(t) =po+ ijCOS(th + ;)
j=1

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases

Frequency domain Time domain

\
()

p(t)

o

OTT?3TI Lo "H LI L TL

8 10 Mon Tue Wed Thu Fri Sat Sun

s(t)

Frequency [1/week] Observation Model Reconstruction

4
p(t) =po+ ijCOS(th + ;)
j=1

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Example: Modeling a single state
Week-long model of a single feature

Dynamic model with n periodic processes:
§'(t) matches the observations in 90% — 95% of cases

Frequency domain Time domain

R E/AVAVAaVAVAVSR
OTT?3TI Tog "IN L NI L JIL

8 10 Mon Tue Wed Thu Fri Sat Sun

\
()

p(t)

s(t)

Frequency [1/week] Observation Model Reconstruction

5
p(t) =po+ ijCOS(th + ;)
j=1

Krajnik, Fentanez et al.: Frequency Map Enhancement for Long-term Autonomy. IEEE T-RO 2018 8/27
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Video 1: Feature-based topological localization

r Feature presence detection
Feature presence probability ——
= Feature presence prediction

Spectral domain

T T T T
. Allcoefficients @
Selected coefficients

learning¢—}— prediction
o e L[ L7 T | _
<|f - 2V A Ve
7120092920000 | 24=¥| P()=Pot) _ p;C0s(w;t + ©;) -
0 1 2 3 4 5 6 7 =1 I T U
Frequency [ 1/week] 4 5 6 7 8 [days]

Frequency-enhanced feature map for visual localisation:

* The observations of image feature visibility (centre,red) are
transferred to the spectral domain (left).

® The most prominent components of the model (left,green)
constitute an analytic expression (centre,bottom) that represents
the probability of the feature being visible at a given time (green).

e This is used to predict the feature visibility at a time when the
robot performs self-localisation (blue).

Krajnik, Fentanes et al.: Long-term topological localisation for service robots in dynamic environ..., In IROS 2014 9/27



Krajnik Chronorobotics — Human-centric Spatio-Temporal Models for Service Robots

AlIC@CTU

Object search scenario

Task: Find a person in shortest time possible.
Topological map, spectral-based model of room occupancies.

Spatial:
- 1 person
- 9 locations

Temporal:
- 16 weeks
- every minute

Figure: The CASAS-Aruba environment.

Krajnik, Kulich et al.:

Where’s Waldo at time t? Using Spatio-Temporal Models for Robot Search, In ICRA 2015 10/27
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Object search scenario

Task: Find a person in shortest time possible.
Topological map, spectral-based model of room occupancies.

S pat i a I : Five—number summary of the Aruba dataset results
- 1 person ' T T =
- 9 locations

3
T

Search time [s]
3
T

Temporal:
- 16 weeks
= eve ry minute o Static  FreMEn—1 FreMEn-2 FreMEn-3 PerGaM-1 PerGaM-2 PerGaM-3

Temporal model type

3
g

g
T

Figure: Time to find a person in the ‘Aruba’ flat.

Krajnik, Kulich et al.: Where’s Waldo at time t? Using Spatio-Temporal Models for Robot Search, In ICRA 2015 10/27
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Temporal context for activity recognition

Task: Classify person activity.

.. . __ p(observation|activity) .
pl(activity|observation) = D (observation) pl(activity)
Posterior Prior
probability probability

Classification pipeline.

Coppolla, Krajnik, et al.: Learning temporal context for activity recognition. In ECAI 2016. 11/27
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Temporal context for activity recognition

Task: Classify person activity.

p(observation|activity)

p(activity|observation) = Dobseroation) p(activity)
Posterior Prior
probability probability

]

Classification pipeline + learning priors.

Coppolla, Krajnik, et al.: Learning temporal context for activity recognition. In ECAI 2016. 11/27
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Temporal context for activity recognition

Task: Classify person activity.

p(activity|observation,t) =

Posterior
probability

p(observation|activity)

p(observation,t)

p(activity,t)

Prior
probability

>

FreMEn

|

Classification pipeline + temporal priors.

Coppolla, Krajnik, et al.: Learning temporal context for activity recognition. In ECAI 2016.

11/27
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Temporal context for activity recognition

Task: Classify person activity.
Use FreMEn-aided temporal models as priors.

plactivity, tlobservation) ~ p(observation|activity)p(activity,t)

Household:
- 9 locations
- 12 activities

Office:
- 10 locations
- 10 activities

Coppolla, Krajnik, et al.:

Aruba (apartment) dataset ‘Witham (office) dataset

30 T T T T T

25 A
g & 20 :
2 8
g g 15 n
ZE: \g 10 _/_\\ 4%:
il g 107 AN A A’/ N

Bl A < )

0 I I I I I I

0 2 4 6 8 10 12 14
Time [days] Time [days]

Static Gaussian Mixtures Adaptive intervals
FreMEn —— Interval-based Location—based
Figure: Error rate of activity recognition.

Learning temporal context for activity recognition. In ECAI 2016. 12/27
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SPEctral Robotic Mapping

The approach allows for
e conversion of static models into dynamic ones,
e environment state and appearance prediction.

However, it requires regular and frequent observations,
1 N
_ ™ ,—27jkn/N
S(k) = N E s(nT)e™“™ keN

n=I1

e which results in long, tedious and brittle learning,
e after which the model cannot be updated.

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015

13/27
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FREquency Map ENhancement

The approach allows for
e conversion of static models into dynamic ones,
* environment state and appearance prediction.

Allowing sparse and non-uniform observations,
—iz JeIrtn € Q)
=5 %

* means that we can deal with irregular observations,
¢ and learn incrementally during operation.

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015

13/27
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Frequency Map Enhancement (FreMEn)

Can build spatio-temporal models incrementally from sparse
and irregular observations. Allows on-the-fly learning.

Addition of a new measurement:

B (npts(t)), mean probability

ap ¢+ 5 (nag+st)e ) Vw, ew, state spectrum

B g (B +e i) Vwy €w, oObservation spectrum
n 4+ n+l, num of observations

Performing predictions:

Vi — o — p P predictive spectrum
V.m < argmax |yl m components ~, with highest abs. value
p(t) = pt 300 | cos(wjt + arg(y;)) actual prediction

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 14/27
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Topological path planning

Decide the best time to navigate to a particular location.
Topological map with FreMEn edge traversability.

Spatial:
- 14 nodes
- 26 edges

Temporal:
- two months
- ~ 10x per day

Nav. success rate:
- Static: 60%
- FreMEnN: 90%

Fentanes, Krajnik, et al.: Now or later? Predicting and Maximising Success of Navigation Actions..., In ICRA 2015 15/27
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Topological path planning

Decide the best time to navigate to a particular location.
Topological map with FreMEn edge traversability.

Spatial:
- 14 nodes
- 26 edges ol \{3 =I' V4‘Tra\‘/e_r_sab|l|ty
Temporal: 2: |
- two months =l
- ~ 10x per day 0zl o A1
MU
3 4 5 6 17 8

Nav. success rate:
- Static: 60% weeks

Edge V3->V4: Navigation success over time.
- FreMEn: 90%

Fentanes, Krajnik, et al.: Now or later? Predicting and Maximising Success of Navigation Actions..., In ICRA 2015 15/27
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Topological path planning

Decide the best time to navigate to a particular location.
Topological map with FreMEn edge traversability.

Spatial:

14 nodes V3->V4 T bilit

-26 edges e >\ 1rayer§a il \1'i
Temporal: | : ; ;

- two months S oal ! ; ;

- ~ 10x per day 02}

0.0t ! [ '

Nav. success rate: 0 05 10 15 20 25 3.0 35 40 45 50 55 60 65 7.0

- Static: 60% days

Edge V3->V4: FreMEn model for one week.

- FreMEn: 90%

Fentanes, Krajnik, et al.: Now or later? Predicting and Maximising Success of Navigation Actions..., In ICRA 2015

15/27
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Topological path planning

Decide the best time to navigate to a particular location.
Topological map with FreMEn edge traversability.

Spatial:

- 14 nodes

_ V3 -> V4 Traversability

26 edges wf T R T

Temporal: LN

- two months Sod LA N
o= [ [ [ [ [ [

- 1OX per day 0.2 [ N | [ [ [ [ |
0.0 :\I (' [ [ [ [

Nav. success rate: 0 2 4 6 8 10 12 14 16 18 20 22 24

- Static: 60% hours

Edge V3->V4: FreMEn model for Thursday

- FreMEn: 90%

Fentanes, Krajnik, et al.: Now or later? Predicting and Maximising Success of Navigation Actions..., In ICRA 2015 15/27
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Towards Spatio-Temporal Exploration

Create accurate spatial models.

Mapping pipeline:

Observations

Observations gathered during routine operation

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 16/27
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Towards Spatio-Temporal Exploration

Create accurate spatial models.

Spatial exploration pipeline:

Spatial
model

Observations

Information
gain I(x,y)

Robot decides where to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015

16/27
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Towards Spatio-Temporal Exploration

Create accurate spatial models.

Spatial exploration pipeline:

Observations

Information
gain I(x,y)

Observation
plan

Robot decides where to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015

16/27
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Towards Spatio-Temporal Exploration

Create accurate spatial models.

Spatial exploration pipeline:

Observations

Information
gain I(x,y)

Observation
plan

Robot decides where to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015

16/27
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Towards Spatio-Temporal Exploration

Create and maintain accurate spatial-temporal models.

Spatio-temporal exploration pipeline:

Spatio
Observations temporal

model

Information
gain I(x,y)

Observation
plan

Robot decides where and when to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 17/27
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Towards Spatio-Temporal Exploration

Create and maintain accurate spatial-temporal models.

Spatio-temporal exploration pipeline:

Spatio
Observations temporal

model

Information
gain I(x,y,t)

Observation
plan

Robot decides where and when to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 17/27
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Towards Spatio-Temporal Exploration

Create and maintain accurate spatial-temporal models.

Spatio-temporal exploration pipeline:

Spatio
Observations temporal

model

Information
gain I(x,y,t)

Observation
schedule

Robot decides where and when to perform observations

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 17/27
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Information-theoretic spatio-temporal exploration

Create and maintain accurate spatio-temporal models.
Decide where and when to perform observations
Probability p(t) — Entropy H(t) — Prob. of observation o(t)
‘Next Best Time and Location’

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 18/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Entropy Probability Grd.truth

Schedule

Krajnik, Santos et al.:

Kitchen
Bedroom
Storage —

Kitchen
Bedroom
Storage
Kitchen —

Bedroom
Storage

Kitchen
Bedroom
Storage

Other

3
Time [days]

Life-Long Spatio-Temporal Exploration of Dynamic Environments,

In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Entropy Probability Grd.truth

Schedule

Krajnik, Santos et al.:

Kitchen
Bedroom
Storage —

Kitchen
Bedroom
Storage
Kitchen —

Bedroom
Storage

Kitchen
Bedroom
Storage

Other

3
Time [days]

Life-Long Spatio-Temporal Exploration of Dynamic Environments,

In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Entropy Probability Grd.truth

Schedule

Krajnik, Santos et al.:

Kitchen
Bedroom
Storage —

Kitchen
Bedroom
Storage
Kitchen —

Bedroom
Storage

Kitchen
Bedroom
Storage

Other

E i
;LLV | | | ]
= T T T T |
L e — ‘ ‘ |
T T T |

C | | | |

. T T T
— ‘ ‘ i
1 2 3 4 5
Time [days]
Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Entropy Probability Grd.truth

Schedule

Krajnik, Santos et al.:

Kitchen
Bedroom
Storage —

Kitchen
Bedroom
Storage
Kitchen —

Bedroom
Storage

Kitchen
Bedroom
Storage

Other

E lmn TR HI i
= 1 [N B
T 1 | |
= T T T T |
L e — ‘ ‘ |

T T T |
C | | | |
- T T T ]
— ‘ ‘ i
1 2 3 4 5
Time [days]
Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Kitchen = NI LIALLL |1 WA -

Bedroom -

Storage - II‘ Il LI B

1F T T T T |

Kitchen —
Bedroom
Storage

ok E———ANANN
1

Kitchen | A |
S AN

Kitchen k. coloc. 22 L fo oili e L 4
Bedroom [ 2
Storage e e e v ee ot . - . _

Other —— ‘ ‘ -

Entropy Probability Grd.truth

Schedule

3
Time [days]

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Kitchen
Bedroom
Storage
Kitchen —

Bedroom
Storage

Kitchen
Bedroom
Storage —

Entropy Probability Grd.truth

Kitchen
Bedroom
Storage
Other

Schedule

Krajnik, Santos et al.:

3
Time [days]

Life-Long Spatio-Temporal Exploration of Dynamic Environments,

In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Kitchen Etmomol  bon ™ 1w wut 1
Bedroom w 1
Storage - II‘ L1l L B

J\Az
WAM%

Kitchen f. coloco 22 L fo olli e e e - 4
Bedroom £ 7 oLl SoTT T L T Ll e e 4
Storage e e e v ee ot . .. L. .. i

Other —— ‘ - - B

Kitchen
Bedroom
Storage

Kitchen
Bedroom
Storage

Entropy Probability Grd.truth

olllrolllw

Schedule

3
Time [days]

Krajnik, Santos et al.: Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015 19/27
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

T T T N T T TITT T T
wmwu

Kitc

Kitc

Entropy Probability Grd.truth

Schedule

Bedroom
Storage

Bedroom
Storage

Kitchen

Bedroom

Storage

hen

hen

olllrolllw

Kitchen

Bedroom
Storage

Other

Krajnik, Santos et al.:

AlIC@CTU
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3
Time [days]

Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Kitc

Kitc

Entropy Probability Grd.truth

Schedule

Bedroom
Storage

Bedroom
Storage

Kitchen

Bedroom

Storage

hen

hen

olllrolllw

Kitchen

Bedroom
Storage

Other

Krajnik, Santos et al.:
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Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015
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Spatio-temporal exploration

Decide where and when to go to make observations.
Spatio-temporal entropy + information-gain-based methods.

Kitc

Kitc

Entropy Probability Grd.truth

Schedule

Bedroom
Storage

Bedroom
Storage

Kitchen

Bedroom

Storage

hen

hen

olllrolllw

Kitchen

Bedroom
Storage

Other

Krajnik, Santos et al.:
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Life-Long Spatio-Temporal Exploration of Dynamic Environments, In ECMR 2015
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Mobile Infoterminal - exploration/exploitation
Decide the best time and location to provide an info-terminal
service in a hospital. Maximise number of interactions.
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Mobile Infoterminal - exploration/exploitation

Decide the best time and location to provide an info-terminal
service in a hospital. Maximise number of interactions.

Results of interaction at different locations
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Mobile Infoterminal - exploration/exploitation

Decide the best time and location to provide an info-terminal
service in a hospital. Maximise number of interactions.

Measurements and probability of interactions

Cafeteria
Offices (Staff) galal)
Offices (Dr.)
Kindergarten : :

Lifts gri):vvl;

Time [days]
Active hours (09-18) -----
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Mobile Infoterminal - exploration/exploitation

Decide the best time and location to provide an info-terminal
service in a hospital. Maximise number of interactions.

Probability of interaction at different locations — FreMEn model
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4D Spatio-Temporal Exploration

Spatio-temporal Information-driven Next Best View.
FreMEn 3D grid + spatio-temporal entropy + next best path

Santos, Krajnik et al.: Life-long Information-based Exploration..., Robotics and Automation Letters 2016 21/27
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4D Spatio-Temporal Exploration

Spatio-temporal Information-driven Next Best View.
FreMEn 3D grid + spatio-temporal entropy + next best path

Santos, Krajnik et al.: Life-long Information-based Exploration..., Robotics and Automation Letters 2016 21/27



Krajnik Chronorobotics — Human-centric Spatio-Temporal Models for Service Robots AIC@CTU

4D Spatio-Temporal Exploration
Spatio-temporal Information-driven Next Best View.
FreMEn 3D grid + spatio-temporal entropy + next best path

O Chair N Storage |:| Table K| Sofa Kitchen
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Video 2: 4D maps build by a FreMEn-based
exploration system

To predict the grid state for a particular time, each cell contains
a temporal model. Approx. 10° cells resulted in memory issues.

Santos, Krajnik et al.: Life-long Information-based Exploration..., Robotics and Automation Letters 2016
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From discrete to continuous models

FreMEn is powefull, but it can model only:
e Bernoulli distributions, i.e. probabilities of binary states,
e discrete models, which might be memory inefficient,
e events with durations comparable to the period length,
¢ independent components

Warped Hypertime can represent:
e arbitrary distributions, e.g. number of people, robot velocity,
* memory-efficient, continous models,
e arbitrarily long events and changes,
® respects spatio-temporal continuity

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 23/27
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Warped Hypertime - continuous models

AlIC@CTU

Example: modelling the number of people within a given area

number of people

Krajnik et al.:

X
X X %
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X X

X X x
X X x X x
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day 1 | day 2 time

(x,0)

Observe data over time,

Warped Hypertime for Long-term Autonomy of Robots. RAL 2019
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Warped Hypertime - continuous models

Chronorobotics — Human-centric Spatio-Temporal Models for Service Robots

AlIC@CTU

Example: modelling the number of people within a given area

Krajnik et al.:

number of people

X
X X %
XX X
X ¥ X XXX %
X X X Xy
X % x
X% x X X
,,,,,,,,,,,,,,,,,,,,,,,, MR SR
X % ><><
x X X %
X x X x
R XK XX I G K X K
day 1 | day 2 time
(x,0)

establish some time-unavare model,

Warped Hypertime for Long-term Autonomy of Robots. RAL 2019
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

e E[fﬂu

\
establish model error over time ¢(t),

number of people

day 1 day 2 time

(x,t)

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

TRl %u

day 1 ‘ day 2 time
use FreMEn to find periodicity T in €(t),

number of people

(x,t)

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

X
X X %
o XX X o
= X % X XXX % = XX
I X 1< X
g x X X X X7 x g X%
< X % <
S X X x X x S X
5 X 5 XX
é X X M X é X
X X
2 x x X X « 2 w
X x X x X
>2<><><>< x X ><>g<>2<>< ><>z<><>z§< X >§<§>S< &)
day 1 | day 2 time ;
ime

(x,t) —= (x,cos(2pi t/T), sin(2pi t/T))

project 1D time in ‘2D warped hypertime’

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

X
X X %
° XX X o | Clusters
2 X % X X >§<>< 2
g x X X X X7 x g,
< X % X <
S X X x X x <]
= x i
2 X X M X 2
g x x £
= X X X % =
X x X x
Ko XK XX XX GT K X KK
day 1 ‘ day 2 time

time

(x,t) —= (x,cos(2pi t/T), sin(2pi t/T))

create a model of the data distribution (k-means, EM-GMM),

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

X
X X %
° XX X o | Clusters
2 X % X X >§<>< 2
g x X X X X7 x g,
< X % X <
S X X x X x <]
= x i
2 X X M X 2
g x x £
= X X X % =
X x X x
Ko XK XX XX GT K X KK
day 1 ‘ day 2 time

time

(x,t) —= (x,cos(2pi t/T), sin(2pi t/T))

repeat (add 2 temporal dimensions per observed periodicity).

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Warped Hypertime - continuous models

Example: modelling the number of people within a given area

X
X X %
° XX X o | Clusters
2 X % X X >§<>< 2
g x X X X X7 x g,
< X % X <
S X X x X x <]
= x i
2 X X M X 2
g x x £
= X X X % =
X x X x
Ko XK XX XX GT K X KK
day 1 ‘ day 2 time

time

(x,t) —= (x,cos(2pi t/T), sin(2pi t/T))

Predict probability of future distribution of .

Krajnik et al.: Warped Hypertime for Long-term Autonomy of Robots. RAL 2019 24 /27
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Video 3: Predicting future presence of people

Predicting future density of pedestrians
e pedestrian tracker detects people at z, y at time ¢,

e Warped Hypertime adds 4 temporal dimensions

® [z,y] — [:c,y,cos(27rTi0),sin(QWTiO),cos(%rTil),sin(27rTil)]
¢ 9 clusters characterise spatio-temporal density of people

Prediction of people density

13:00

15:00

09:00 W | 11:00
I Predicted density B Predicted density
+++ Real detections - “+* Real detections
— Corridor wall 2 | — corridor wal

Vintr et al.: Spatio-temporal representation

B Predicted density
+** Real detections

= Corridor wall

B Predicted density
+** Real detections

= Corridor wall

... of human presence in service robotics. In ICRA 2019
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Video 4: Predicting future pedestrian flows

Prediction of pedestrian flows
e pedestrian tracker provides x, y, ¢, v at time t,
e Warped Hypertime adds 4 temporal dimensions
o [:c,y,qb,1),cos(27rTi0),sin(27rTiO),cos(27rTi1),sin(27rTil)]
e 13 clusters characterise intensity, velocity and directions

Prediction of pedestrian flows
;| 09:05 —i  ~‘7| 12:10

L o L

T 7T 1T T
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What to remember from the lecture

¢ explicit representation of the temporal domain improves the
efficiency of robot operation in long-term scenarios [1]

® one can convert static representations into models that
represent how the environment changes over time,

® by modeling the uncertainty in the spectral domain [2],

¢ by modeling the time in a multi-dimensional space [3].

References:
¢ [1] Krajnik et al.: Chronorobotics: ... In IJCRAI 2020
® [2] Krajnik et al.: FreMEn: ... IEEE T-RO 2017
¢ [3] Krajnik et al.: Warped Hypertime ... IEEE RAL 2019

We strongly suggest to read [1] for an overview of the topic.
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