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Mathematical programming

LP
maximize cTx
subject to Ax <b
and x>0

MILP

Some of the variables are integer
Objective and constraints are still linear

Convex program
Optimize a convex function over a convex set

Non-convex program
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Task Taxonomy %Qg

Target Management

Target previously pointed out ?

No Yes

Target Detection Target Tracking
| . ) .

Involve mobile or fixed sensors ? Rgcfm”e m::dt:p le or Smglf?
\ point of view per target ?

Mobile Fixed Multiple Single
Viewpoints Viewpoint
|M0bile Search | |Sratic Surveillance
|

Provide any guarantee ? Target Localization Monitoring
!

Worst-case None ' i ?

Probabilistic Multiple or single target :

Multiple Targets Single Target
Capture | Probabilistic Search Hunting
[
Cyclic task? Following
Yes

Patrolling

Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking:
taxonomy and survey. Autonomous Robots, 40(4), 729-760. 3




Resource allocation games %
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Developed by team of prof. Milind Tambe at USC (2008-now)
Now at Harvard + Google Research India
Goal: Optimally use limited resources using randomization

In daily use by various organizations and security agenmes



http://teamcore.usc.edu/projects/security/

Resource allocation games @ N\
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Resource allocation games %@y /\Ii

Setof targets: T = tq, ..., t,

Limited (homogeneous) security resources r € N
Each resource can fully protect (cover) a single target

The attacker attacks a single target
Attacker’s utility for covered/uncovered attack: US(t) < UK (t)

Defender’s utility for covered/uncovered attack: Uj(t) > UZ(t)

Nash equilibria in non-zero-sum games have issues:
equilibrium selection problem, computational complexity
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Stackelberg equilibrium %/\i

the leader (1) — publicly commits to a strategy

the follower (f) — plays a best response to leader
arg max 11(0y, of)

o1EA(A;); O'fEBRf(O'l)

Why?
The defender needs to commit in practice (laws, regulations, etc.)
It may lead to better expected utility

Example 0 ®

Unprotected -4, 2 -6, 2
Protected 3,1 5,1

Pure SE: (R,L) -> -4; Mixed SE ~-3.5



Mixed Stackelberg equilibrium %CWEQ

O ®

Unprotected -4, 2 -6, 2
Protected 3,1 5,1

Strong Stackelberg Equilibrium
Follower breaks ties in favor of the leader (0.5; 0.5) ->-3.5
Isn’t that weird?

Weak Stackelberg Equilibrium
Follower breaks ties worst for the leader (0.5;0.5) ->-5.5

The equilibrium may not exist, because smaller motivation is better
For any € > 0 (0.5-¢; 0.5+¢) -> -3.5-¢



Solving resource allocation games %% /\Ii

CENTER

Kiekintveld, et al.: Computing Optimal Randomized Resource
Allocations for Massive Security Games, AAMAS 2009

Only coverage vector c; matters, Z is a sufficiently large number

max d
a; € {0,1} VteT

Zat: 1

teT

ct € 0, 1] VteT
Jes om
teT

d—Us(t,C)< (1—a))-Z VteT
0<k—-Us(t,C)< (1—a)-Z YteT



Sampling the coverage vector % / \I

0.8
0.7
0.6 1T
0.5
0.4
0.3
0.2

0.1
0 O

tl t2 t3 t4 t5 t6
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Scalability %% CENTER

25 resources, 3000 targets => 5 x 10°! defender’s actions
no chance for matrix game representation

The algorithm explained above is ERASER

Runtime scaling with Targets
# ERASER ORIGAMI A ORIGAMI-MILP
15

< L 2 4
£
= 10 ”0
£ 'S A 4
£ 2
= P 2 4

O A A A A A AAAAAAAALAALAALAA AL

1000 1500 2000 2500 3000

Targets
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Studied extensions %é/\i
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Complex structured defender strategies

Probabilistically failing actions

Attacker’s types

Resource types and teams

Bounded rational attackers
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Resource allocation (security) games %ﬁ
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Advantages
Wide existing literature (many variations)
Good scalability
Real world deployments

Limitation
The attacker cannot react to observations (e.g., defender’s position)

13



Perimeter patrolling %é/\i
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Agmon et al.: Multi-Robot Adversarial Patrolling: Facing a Full-
Knowledge Opponent. JAIR 2011.

The attacker can see the patrol!

14



Perimeter patrolling %% / \I

Polygon P, perimeter splitto N segments

5 equivalent
Defender has homogenous resources k > 1
move 1 segment per time step
turn to the opposite direction in T time steps

Attacker can wait infinitely long and sees everything
chooses a segment where to attack
requires t time steps to penetrate

15



Interesting parameter settings

Letd = % be the distance between equidistant robots

There is a perfect deterministic patrol strategy if t > d

the robots can just continue in one direction

What about t = %d ?

f
d
t >.' 1d—(t—r)

The attacker can guarantee successif t+1<d—-(t—17)= t<

% CENTER

d+t-1

16



Optimal patrolling strategy %% /\Ii
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Class of strategies: continue with probability p, else turn around

Theorem: In the optimal strategy, all robots are equidistant and
face in the same direction.

Proof sketch:

1. the probability of visiting the worst case segment between
robots decreases with increasing distance between the robots

2. making a move in different directions increases the distance

17



Probability of penetration %%%cwm

For simplicity assume 7 = 1

Probability of visiting s; at least once in next t steps
= probability of visiting the absorbing end state from s;
sum of each direction visited separately
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— — sl 7=p 0 0 o o o o 0o p
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Probability of penetration %@Cwm

Algorithm 1 Algorithm FindFunc(d,t)

© 00 N D W

10:
11:
12:
13:

1: Create matrix M of size (2d + 1)(2d + 1), initialized with Os
2: Fill out all entries in M as follows:

3:

4: for i + 1 to 2d do

M[2d+1,2d 4+ 1] =

Mli, min{i +1,2d+ 1}] =p
Mli,max{1,i —2}| =1—p
Compute MT = M!
Res = vector of size d initialized with Os
for 1 <loc <ddo
V' = vector of size 2d + 1 initialized with Os.
V[2loc] + 1
Resl|loc] =V x MT[2d + 1]
Return Res

All computations are symbolic. The result are functions ppd;: [0,1] — [0,1]
expressing the probability of penetration at i for a given probability of turn.
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Optimal turn probability %Cwm

Maximin value for p

Each line represents one segment (ppd;)

1¢
09
08}
0.7

06}

ppdi(p)
ppdi(p)

05}

0.4}

03}

02t

01}

Iterate all pairs of intersection and maximal points to find solution

it is all polynomials .



Perimeter patrol — summary @% /\Ii
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Split the perimeter to segments traversable in unit time
Distribute patrollers uniformly along the perimeter
Coordinate them to always face the same way

Continue with probability p turn around with probability (1 — p)
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Area patrolling @%CWEQ

Basilico et al.: Patrolling security games: Definition and
algorithms for solving large instances with single patroller and
single intruder. AlJ 2012.
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Area patrolling - Formal model %%CWER

Environment represented as a graph

Targets T = {6,8,12,14,18}

Penetration time d(t) (.
Target values Q .

(va (t),v4(0))

(N

e
o
®

]
Defender: Markov policy
N

Attacker: wait, attack(t)




Solving zero-sum patrolling game %%CWER

We assume Vt € T : v,(t) = v (t)
a(i,j) = 1 if the patrol can move form i to j in one step; else O

P.(t, h) is the probability of stopping an attack at target t started when the patrol was at node h
y{"’jt is the probability that the patrol reaches node j from i in w steps without visiting target t

maxu
ajj=0 Vi,jeV
aii=1 VieV
Z -] > icr vali),  x=intruder-capture or no-attack
jev ug(x) =

2_ier\(r) Va(i), x= penetration-t

arij <a(i,j) Vi,jeV

]/Lj =wj;j VteT,i,jeV\{t}

w,t w—1.t P

Vo' = Do iy Mawj) Ywef2...do) teT i jevi(y
xeV\|{t}

Pc(t,h)y=1— Z ]/f(;]’f VteT,heV
JeVA{t)
u < ug(intruder-capture) P¢(t, h) + ug(penetration-t)(1 — Pc(t, h))

What type of optimization problem is this? LP? MILP? Convex? 24



Scaling up %@y / \I

No need to visits nodes not on shortest paths between targets
With multiple shortest paths, only the closer to targets is relevant

It is suboptimal to stay at a node that is not a target

©=0-0-0
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Summary %%
CENTER

GT can be applied to real world problems in robotics

Pursuit-evasion games
Perfect information capture
Visibility-based tracking

Patrolling
resource allocation
perimeter patrolling
area patrolling

Al (GT) problems can often be solved by transformation to
mathematical programming

26
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