

Artificial Intelligence in Robotics

Lecture 10: Patrolling

Viliam Lisý

Artificial Intelligence Center
Department of Computer Science, Faculty of Electrical Eng.
Czech Technical University in Prague

Mathematical programming

LP

$$egin{array}{ll} {
m maximize} & {f c}^{
m T}{f x} \ {
m subject\ to} & A{f x} \leq {f b} \ {
m and} & {f x} \geq {f 0} \ \end{array}$$

MILP

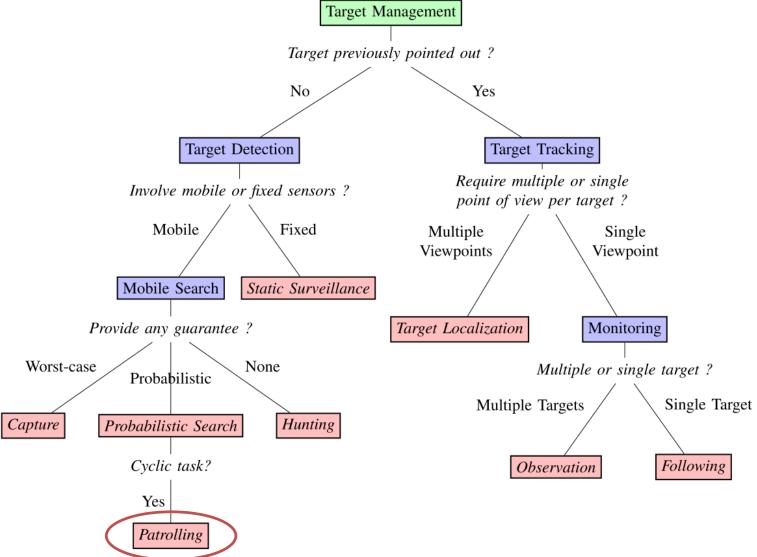
Some of the variables are integer
Objective and constraints are still linear

Convex program

Optimize a convex function over a convex set

Non-convex program

Task Taxonomy



Robin, C., & Lacroix, S. (2016). Multi-robot target detection and tracking: taxonomy and survey. Autonomous Robots, 40(4), 729–760.

Resource allocation games

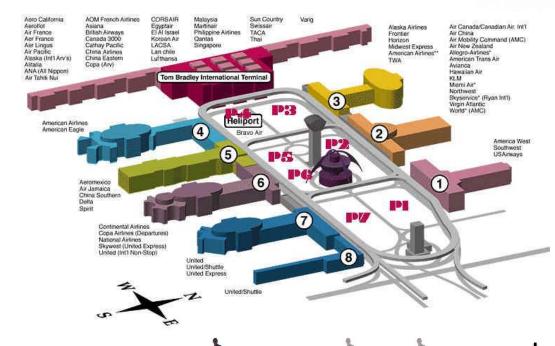
Developed by team of prof. Milind Tambe at USC (2008-now)

Now at Harvard + Google Research India

Goal: Optimally use **limited** resources using **randomization**

In daily use by various organizations and security agencies

Resource allocation games



	1	2	3	4	5	6	7	8	
Unprotected	10	11	9	15	11	15	14	6	
Protected	5	4	5	7	6	5	7	3	
ptimal strategy	0	0.14	0	0.62	0.2	0.49	0.56	0	

-15

-14

-11

-10

Resource allocation games

Set of targets: $T = t_1, ..., t_n$

Limited (homogeneous) security resources $r \in \mathbb{N}$

Each resource can fully protect (cover) a single target

The attacker attacks a single target

Attacker's utility for covered/uncovered attack: $U_a^c(t) < U_a^u(t)$

Defender's utility for covered/uncovered attack: $U_d^c(t) > U_d^u(t)$

Nash equilibria in non-zero-sum games have issues: equilibrium selection problem, computational complexity

Stackelberg equilibrium

the leader (l) – publicly commits to a strategy the follower (f) – plays a best response to leader

$$\arg\max_{\sigma_l \in \Delta(A_l); \, \sigma_f \in BR_f(\sigma_l)} r_l(\sigma_l, \sigma_f)$$

Why?

The defender needs to commit in practice (laws, regulations, etc.)
It may lead to better expected utility

Example			R
	Unprotected	-4, 2	-6, 2
	Protected	-3, 1	-5, 1

Pure SE: $(R,L) \rightarrow -4$; Mixed SE ~ -3.5

Mixed Stackelberg equilibrium

Unprotected -4, 2 -6, 2
Protected -3, 1 -5, 1

Strong Stackelberg Equilibrium

Follower breaks ties in favor of the leader (0.5; 0.5) -> -3.5 Isn't that weird?

Weak Stackelberg Equilibrium

Follower breaks ties worst for the leader (0.5; 0.5) -> -5.5

The equilibrium may not exist, because smaller motivation is better For any $\epsilon > 0$ (0.5- ϵ ; 0.5+ ϵ) -> -3.5- ϵ

Solving resource allocation games

Kiekintveld, et al.: Computing Optimal Randomized Resource Allocations for Massive Security Games, AAMAS 2009

Only coverage vector c_t matters, Z is a sufficiently large number

$$\max \quad d$$

$$a_t \in \{0, 1\} \quad \forall t \in T$$

$$\sum_{t \in T} a_t = 1$$

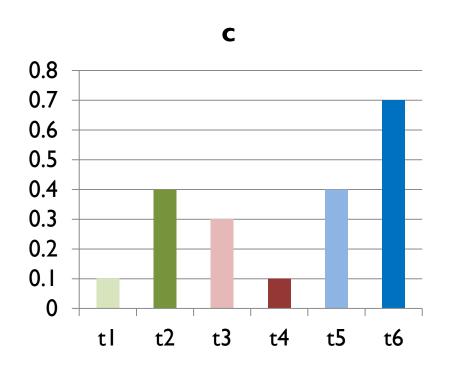
$$c_t \in [0, 1] \quad \forall t \in T$$

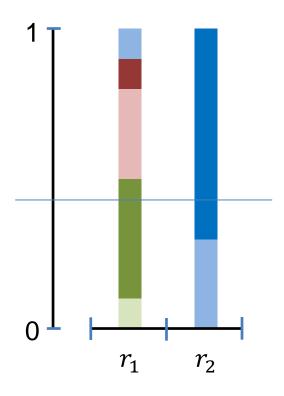
$$\sum_{t \in T} c_t \leq m$$

$$d - U_{\Theta}(t, C) \leq (1 - a_t) \cdot Z \quad \forall t \in T$$

$$0 \leq k - U_{\Psi}(t, C) \leq (1 - a_t) \cdot Z \quad \forall t \in T$$

Sampling the coverage vector

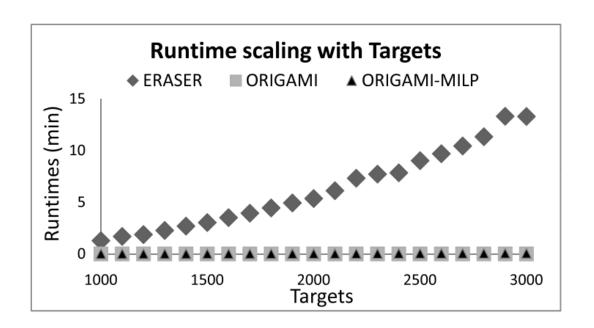




Scalability

25 resources, 3000 targets => 5×10^{61} defender's actions no chance for matrix game representation

The algorithm explained above is ERASER



Studied extensions

Complex structured defender strategies

Probabilistically failing actions

Attacker's types

Resource types and teams

Bounded rational attackers

Resource allocation (security) games

Advantages

Wide existing literature (many variations)

Good scalability

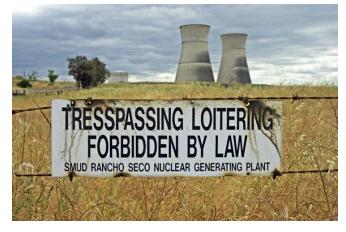
Real world deployments

Limitation

The attacker cannot react to observations (e.g., defender's position)

Perimeter patrolling

Agmon et al.: Multi-Robot Adversarial Patrolling: Facing a Full-Knowledge Opponent. JAIR 2011.



Perimeter patrolling

Polygon *P*, perimeter split to *N* segments



Defender has homogenous resources k > 1

move 1 segment per time step turn to the opposite direction in τ time steps

Attacker can wait infinitely long and sees everything

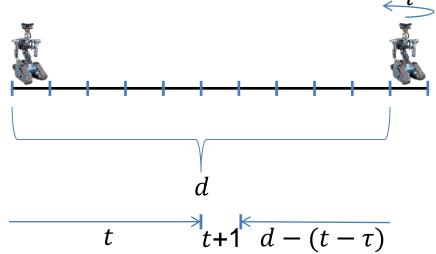
chooses a segment where to attack requires *t* time steps to penetrate

Interesting parameter settings

Let $d = \frac{N}{k}$ be the distance between equidistant robots

There is a perfect deterministic patrol strategy if $t \ge d$ the robots can just continue in one direction

What about
$$t = \frac{4}{5}d$$
 ?



The attacker can guarantee success if $t + 1 < d - (t - \tau) \Rightarrow t < \frac{d + \tau - 1}{2}$

Optimal patrolling strategy

Class of strategies: continue with probability p, else turn around

Theorem: In the optimal strategy, all robots are equidistant and face in the same direction.

Proof sketch:

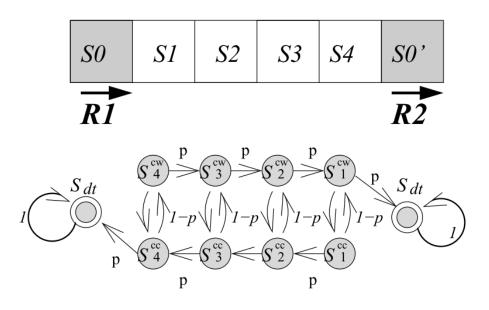
- the probability of visiting the worst case segment between robots decreases with increasing distance between the robots
- 2. making a move in different directions increases the distance

Probability of penetration

For simplicity assume $\tau = 1$

Probability of visiting s_i at least once in next t steps

= probability of visiting the absorbing end state from s_i sum of each direction visited separately



	S_I^{cc}	S_I^{cw}	S_2^{cc}	S_2^{cw}	S_3^{cc}	S_3^{cw}	S_4^{cc}	S_4^{cw}	S_{dt}
S_{I}^{cc}	0	1-p	p	0	0	0	0	0	0
S_I^{cw}	1-p	0	0	0	0	0	0	0	p
S_2^{cc}	0	0	0	1-p	p	0	0	0	0
S_2^{cw}	0	p	1-p	0	0	0	0	0	0
S_3^{cc}	0	0	0	0	0	1-p	p	0	0
S_3^{cw}	0	0	0	p	1-p	0	0	0	0
S_4^{cc}	0	0	0	0	0	0	0	1-p	p
S_4^{cw}	0	0	0	0	0	p	1-p	0	0
S_{dt}	0	0	0	0	0	0	0	0	1

Probability of penetration

Algorithm 1 Algorithm FindFunc(d, t)

- 1: Create matrix M of size (2d+1)(2d+1), initialized with 0s
- 2: Fill out all entries in M as follows:

3:
$$M[2d+1, 2d+1] = 1$$

4: for
$$i \leftarrow 1$$
 to $2d$ do

5:
$$M[i, \min\{i+1, 2d+1\}] = p$$

6:
$$M[i, \max\{1, i-2\}] = 1 - p$$

7: Compute
$$MT = M^t$$

8:
$$Res = vector of size d initialized with 0s$$

9: for
$$1 \leq loc \leq d$$
 do

10:
$$V = \text{vector of size } 2d + 1 \text{ initialized with 0s.}$$

11:
$$V[2loc] \leftarrow 1$$

12:
$$Res[loc] = V \times MT[2d+1]$$

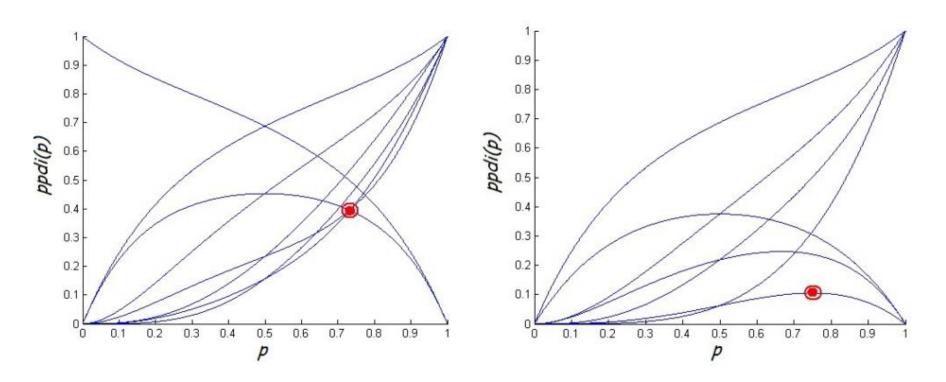
13: Return Res

All computations are symbolic. The result are functions $ppd_i: [0,1] \to [0,1]$ expressing the probability of penetration at i for a given probability of turn.

Optimal turn probability

Maximin value for p

Each line represents one segment (ppd_i)



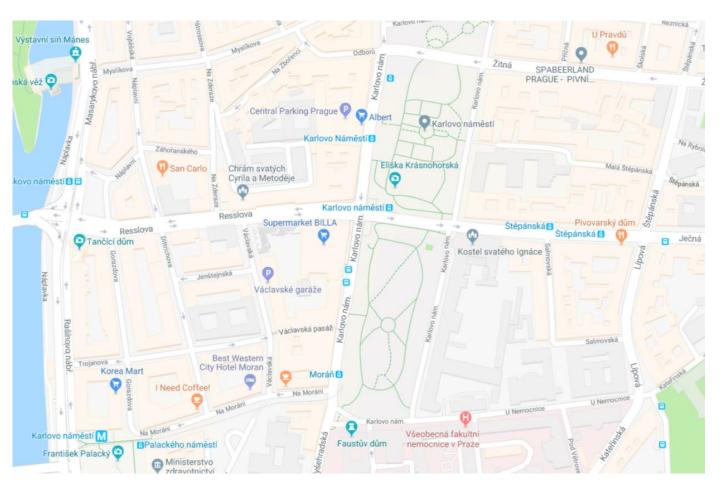
Iterate all pairs of intersection and maximal points to find solution it is all polynomials

Perimeter patrol – summary

Split the perimeter to segments traversable in unit time Distribute patrollers uniformly along the perimeter Coordinate them to always face the same way Continue with probability p turn around with probability p

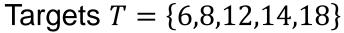
Area patrolling

Basilico et al.: Patrolling security games: Definition and algorithms for solving large instances with single patroller and single intruder. AlJ 2012.



Area patrolling - Formal model

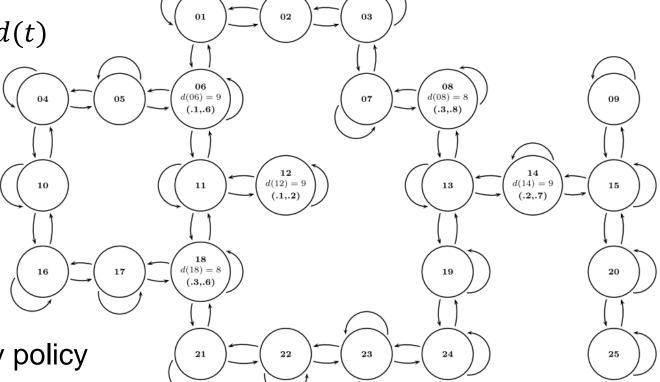
Environment represented as a graph



Penetration time d(t)

Target values

 $(v_d(t),v_a(t))$



Defender: Markov policy

Attacker: wait, attack(t)

Solving zero-sum patrolling game

We assume $\forall t \in T : v_a(t) = v_d(t)$

a(i,j) = 1 if the patrol can move form i to j in one step; else 0

 $P_c(t,h)$ is the probability of stopping an attack at target t started when the patrol was at node t $\gamma_{i,j}^{w,t}$ is the probability that the patrol reaches node t from t in t steps without visiting target t

max u

$$\begin{aligned} &\alpha_{i,j}\geqslant 0 \quad \forall i,j\in V\\ &\sum_{j\in V}\alpha_{i,j}=1 \quad \forall i\in V\\ &\alpha_{i,j}\leqslant a(i,j) \quad \forall i,j\in V\\ &\gamma_{i,j}^{1,t}=\alpha_{i,j} \quad \forall t\in T,\ i,j\in V\setminus\{t\}\\ &\gamma_{i,j}^{w,t}=\sum_{x\in V\setminus\{t\}}\left(\gamma_{i,x}^{w-1,t}\alpha_{x,j}\right) \quad \forall w\in\left\{2,\ldots,d(t)\right\},\ t\in T,\ i,j\in V\setminus\{t\}\\ &P_c(t,h)=1-\sum_{j\in V\setminus\{t\}}\gamma_{h,j}^{d(t),t} \quad \forall t\in T,\ h\in V\\ &u\leqslant u_{\mathbf{d}}(intruder\text{-}capture)P_c(t,h)+u_{\mathbf{d}}(penetration\text{-}t)\left(1-P_c(t,h)\right) \end{aligned}$$

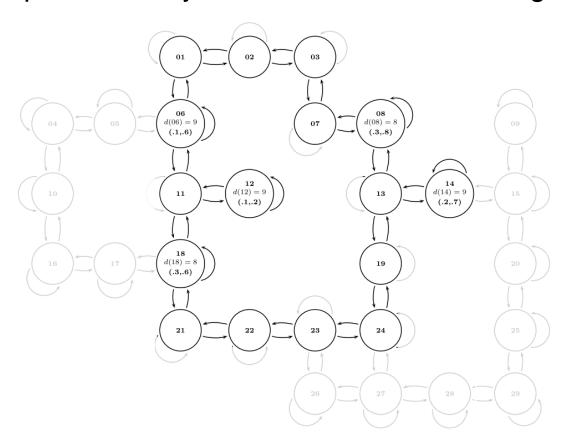
What type of optimization problem is this? LP? MILP? Convex?

Scaling up

No need to visits nodes not on shortest paths between targets

With multiple shortest paths, only the closer to targets is relevant

It is suboptimal to stay at a node that is not a target



Summary

GT can be applied to real world problems in robotics

Pursuit-evasion games

Perfect information capture

Visibility-based tracking

Patrolling

resource allocation perimeter patrolling area patrolling

Al (GT) problems can often be solved by transformation to mathematical programming

Resources

Kiekintveld, C., Jain, M., Tsai, J., Pita, J., Ordóñez, F. and Tambe, M. "Computing optimal randomized resource allocations for massive security games." AAMAS 2009.

Agmon, Noa, Gal A. Kaminka, and Sarit Kraus. "Multi-robot adversarial patrolling: facing a full-knowledge opponent." Journal of Artificial Intelligence Research 42 (2011): 887-916.

Basilico, Nicola, Nicola Gatti, and Francesco Amigoni. "Patrolling security games: Definition and algorithms for solving large instances with single patroller and single intruder." Artificial Intelligence 184 (2012): 78-123.