
B(E)3M33UI — Exercise ML02: Linear regression

Petr Pošík, Jiří Spilka

March 1, 2021

The learning goals:

• formulate machine learning task as an optimization problem

• get familiar with the general process of model fitting

• understand the linear regression model

• introduce the numpy package and its features

The code is organized into the following modules:

• ML02.py - the main script for the exercise
• linreg.py - helper functions for linear regression

After completion, zip these two files and hand in the archive via the BRUTE. If you do not

manage to complete the exercise in the lab, finish it as a homework!

1 Problem description

In this exercise, we will use the auto-mpg.csv dataset that contains examples of cars and their
features: miles per gallon, number of cylinders, displacement, horse power, weight, accelera-
tion, manufacturing year, origin (USA, EUR, JAP), and the car name.

For the simple regression exercise, we study the relation of horsepower (x) and displacement

(y), i.e. you shall build the model ŷ = h(x).

Task 1: Run the ML02.py script. It should end up in an error but it should show scatter plot of
data (you can also stop execution using plt.show()). Make three hypothesis for linear regression
weights – estimate the parameters w0 and w1 by hand and draw them into a weight space (x-
axis w1, y-axis w0). Further, fill them into ML02.py. Before we can use these weights we need to
implemented several functions.

2 Computing predictions of a linear model given w0, w1

From the lecture, you should know that the predictions

ŷ = XwT,

where X is the [|T| × (D + 1)] matrix of inputs in homogeneous coordinates, w = (w0, w1) is
the (D + 1)-vector of parameters of the linear model, and ŷ is the |T|-vector of predictions.

Task 2: In linreg.py, create function homogenize(X) which

• takes a [|T| × D] matrix of inputs, and

1

• produces a [|T| × (D + 1)] matrix of inputs in homogeneous coordinates, i.e. it prepends
a column vector of 1s to X.

Hints: Have a look at:

1. The numpy.ndarray.shape property. How do you learn the number of rows and columns?

2. The numpy.ones() function. How do you create a [|T| × 1] array of ones?

3. The numpy.hstack() function. How do you add the column of ones to the data X?

Task 3: In linreg.py, create function pred_regr_lin(w,X) which takes

• a (D + 1)-vector of linear model parameters w and

• a [|T| × D] matrix of inputs X, and

• produces a |T|-vector of estimates ŷ.

Hints:

1. Do not forget to homogenize the inputs.

2. Have a look at the numpy.ndarray.T property. How do you get the transposed vector wT?
Does the transpose have any effect for vectors?

3. Have a look at the numpy.ndarray.dot() method or use matrix multiplication symbol @.
How do you compute the matrix product XwT?

Now, you should see the predictions of the linear model in the figure. What is the error that
your hand-crafted model makes on the data?

3 Computing the error of the linear model

The linreg.py module contains function compute_cost_regr_lin(w,X,y), i.e. it implements the
J(w, T) function which describes how well the linear model with parameters w fits the data T.
It first computes the predictions of the model, and then calls function compute_err_mse(y,yhat)

which should return the mean squared error (MSE). This function, however, is not imple-
mented yet.

Task 4: In linreg.py, create function compute_err_mse(y,yhat) which

• takes

1. a |T|-vector of true values of y and

2. a |T|-vector of the corresponding predictions ŷ, and

• computes the mean squared error (MSE), i.e. the score used by the least squares method.

Hints:

• you can compute the sum of squares either

1. by squaring the differences (diffs**2) and then summing them (numpy.sum()), or

2. by using the dot product of the vector of differences with itself diffs@diffs.

• Do not forget to divide the sum of squares by the number of training examples.

Task 5: Now, when you have an objective measure of the model fit, try a few times and find by
hand better values of w0 and w1, i.e. values which result in a lower error.

2

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ones.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.hstack.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.T.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html

4 Model fitting by minimization of J(w, T)

You have just sought for the best values of w0 and w1 by hand. We can make the computer to
do this operation for us. We shall use the scipy.optimize package.

Task 6: In linreg.py, create function fit_regr_lin_by_minimization(X,y) which

• takes the training data T as input (X,y) and

• returns the (hopefully) optimal values of w as a Numpy array.

Hints:

1. Take a look at the scipy.optimize.minimize() function. For us, it will be sufficient to use
it in the form

result = minimize(f, w_init, method='bfgs')

where f is the function (of a single argument) to be minimized, w_init is the initial guess
of the weights, and method='bfgs' chooses the BFGS optimization method.

2. The resulting values of w can be found in result.x.

3. Function compute_cost_regr_lin(w,X,y) is the implementation of J(w, T), which we would
like to minimize with respect to w. However, we cannot pass this function to minimize

directly, since the call

v = f(w_init)

must pass without any error. Define a local function inside the fit_regr_lin_by_minimization
like this:

def fit_regr_lin_by_minimization(w,X,y):

Possibly some code

def f(w): return compute_cost_regr_lin(w,X,y)

Some other code

Then you can use function f(w) as an argument to minimize.

4. As the initial guess w_init, you can use your hand-crafted w, or e.g. (0, 0), or (100, 1); it
does not matter much in this case.

5 Model fitting using the normal equation

Task 7: In linreg.py, create function fit_regr_lin_by_normal_equation(X,y) which

• takes the training data T as input (X,y), and

• produces optimal values of w as a Numpy array by implementing the equation

w∗ = (XTX)−1XTy.

Hints:

1. Do not forget to homogenize X.

2. You should know how to do matrix-matrix and matrix-vector multiplication using the
numpy.ndarray.dot() method or using the @ symbol.

3. Have a look at numpy.linalg.inv() function for inverting a matrix.

Now, you should see the predictions of the optimal linear model in the figure. It is probably
not very different from your hand-tuned one.

3

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.dot.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.inv.html

6 Linear model using scikit.learn package

In the above tasks, you learned how to fit a linear regression model manually for educational
purposes. Of course, in practice you shall take advantage of a ready-to-use package. In Python,
one possibility is to use the scikit.learn package. It is a collection of functions and classes for
machine learning and modeling. Since we will use it in the forthcoming exercises, let’s try the
same thing using the scikit.learn API.

Task 8: In the respective section of ML02.py, fill in the code to train a linear model and get its
predictions using scikit.learn API.

Hints:

1. Take a look at sklearn.linear_model.LinearRegression.

2. The model fitting is done by the sklearn.linear_models.LinearRegression.fit() method.

3. The prediction is done by the sklearn.linear_models.LinearRegression.predict() method.

4. The parameters of the linear model can be found in LinearRegression.intercept_ prop-
erty (w0), and in LinearRegression.coef_ property (w1, . . . , wD).

7 Multivariate linear regression

So far we have worked with the univariate case, x = x, D = 1. Let’s try similar thing as above,
but for the multivariate case, i.e. try to predict the horse power on the basis of miles-per-gallon,

number of cylinders, displacement, weight and acceleration: ĥp = h(mpg, cyl, disp, wgt, acc).

Task 9: In the respective section of ML02.py, fill in the code to load the data for multivariate
regression, train the multivariate model and compute its error.

Hints: Do you really need any hint?

The resulting error shall be lower than in the case of simple regression, since the model uses
more knowledge about the cars, and can thus account for more variability in the data.

8 Summary

In this exercise, we have used three ways of learning the linear regression model: the mini-
mization of cost function J, the normal equation, and the scikit-learn implementation.

The approach based on error minimization is very general and can, in principle, be used
with any kind of model. In the next exercises, we will mostly use the scikit-learn methods.

Complete the exercise as a homework, ask questions on the forum, and upload the solu-

tion via Upload system (BRUTE)!

4

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

	Problem description
	Computing predictions of a linear model given w0, w1
	Computing the error of the linear model
	Model fitting by minimization of J(bold0mu mumu wwwwww, T)
	Model fitting using the normal equation
	Linear model using scikit.learn package
	Multivariate linear regression
	Summary

