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Uncertainty

Probabilistic reasoning is one of the frameworks that allow us to maintain our beliefs
and knowledge in uncertain environments.

Introduction

e Uncertainty Usual scenario:

e Notation . . .

« Ouiz m  Observed variables (evidence): known things related to the state of the world; often
 Joint distribution imprecise, noisy (info from sensors, symptoms of a patient, etc.).

e Cheatsheet

e Contents

m Unobserved, hidden variables: unknown, but important aspects of the world; we
need to reason about them (what the position of an object is, whether a disease is
present, etc.)

Bayesian networks

Inference

m  Model: describes the relations among hidden and observed variables; allows us to
reason.

Summary

Models (including probabilistic)
m describe how (a part of) the world works.
m are always approximations or simplifications:

m  They cannot acount for everything (they would be as complex as the world
itself).

m  They represent only a chosen subset of variables and interactions between them.

= “All models are wrong; some are useful.” — George E. P. Box

A probabilistic model is a joint distribution over a set of random variables.
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Notation

Random variables (start with capital letters):

X, Y, Weather, . ..

Introduction

e Uncertaint
o Notation g Values of random variables (start with lower-case letters):
e Quiz

e Joint distribution X1,¢€i, Tﬂiny, “en

e Cheatsheet

e Contents

Probability distribution of a random variable:

Bayesian networks
Inference P (X ) or P X

Summary

Probability of a random event:
P(X = xl) or Px(xl)
Shorthand for a probability of a random event (if there is no chance of confusion):

P(+r) meaning P(Rainy = true) or
P(r) meaning P(Weather = rainy)
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Quiz

Which of the following equations for the joint probability distributions over random

variables X3, .

Introduction
e Uncertainty l
e Notation P(Xl, Xz, .

e Quiz
e Joint distribution
e Cheatsheet B

e Contents P(Xl, Xz, e

Bayesian networks

Inference l
P(Xl, Xo, .

Summary

.., X, holds in general?

.., Xn) =P(X1)P(X5)P(X3)-...= |

., Xn) = P(X1)P(X| X1)P(X3]X1, X2) - ... =

S

P(X;|X1, ..., Xi_1)
i=1

l None of the above holds in general, all of them hold in special cases only.

P. Posik (© 2020
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Joint probability distribution

Joint distribution over a set of variables X1, ..., X;, (here descrete) assigns a probability to
each combination of values:

Introduction

P(Xl :xl,...,Xn an) :P(xl,...,xn)

e Uncertainty

e Notation

* Quiz For a proper probability distribution:

e Joint distribution

e Cheatsheet . —
oContents vxlr-.o/xn OP(x1[O.-[-xn) 20 and Z P(x]_,...,xn) —1

x1 2z .,xn
Bayesian networks

Inference

Summary
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Introduction

e Uncertainty

e Notation

e Quiz

e Joint distribution
e Cheatsheet

e Contents

Bayesian networks

Inference

Summary

Joint probability distribution

Joint distribution over a set of variables X1, ..., X;, (here descrete) assigns a probability to
each combination of values:

P(X1=x1,...,Xn =xy) = P(x1,...,%n)
For a proper probability distribution:

VX1, .., % P(x1,...,x,) >0 and Z P(x1,...,xy) =1

xl,...,xn

Probabilistic inference

s Compute a desired probability from other known probabilities (e.g. marginal or
conditional from joint).

m Conditional probabilities turn out to be the most interesting ones:

m  They represent our or agent’s beliefs given the evidence (measured values of
observable variables).

s P(bus on time|rush our) = 0.8

m  Probabilities change with new evidence:

s  P(bus on time) = 0.95
m  P(bus on time|rush our) = 0.8

m  P(bus on time|rush our, dry roads) = 0.85

P. Posik (© 2020
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Probability cheatsheet

Conditional probability:

P(X,Y)

Introduction P(X|Y) =

e Uncertainty ( | ) P (Y)

e Notation

e Quiz Product rule:

e Joint distribution

e Cheatsheet -

e Contents P(X’ Y) T P(X’Y)P(Y)

Bayesian networks Bayes rule:

Inference

N pialy) — PUXIPE) _ PURP)

P(y) i P(yxi)P(x;)
Chain rule:
n
P(Xy,Xa,...,Xn) = P(X1)P(X|X1)P(X3|X1, X2) - ... = [ [ P(Xi| X1, ..., Xi 1)

i=1

X 1Y (X and Y are independent) iff
vx,y: P(x,y) = P(x)P(y)
X1Y|Z (X and Y are conditinally independent given Z) iff

Vx,y,z : P(x,]z) = P(x|z)P(y]2)
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Contents

=  What is a Bayesian network?
=  How it encodes the joint probability distributions?

Introduction =  What independence assumptions does it encode?
e Uncertainty . .
o Notation = How to perform reasoning using BN?
e Quiz

e Joint distribution
o Cheatsheet
e Contents

Bayesian networks

Inference

Summary
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Bayesian networks
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Introduction

Bayesian networks

e [ssues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

What’s wrong with the joint distribution?

How many free parameters #params does a probability distribution over n variables have,

each variable having at least d possible values?

m For all variables binary (d = 2):

P. Posik (© 2020
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What’s wrong with the joint distribution?

How many free parameters #params does a probability distribution over n variables have,
each variable having at least d possible values?

Introduction m  For all variables binary (d = 2): nparams = 2" — 1
Bayesian networks B |n general:

o Issues

e BN

e BN example
e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary
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What’s wrong with the joint distribution?

How many free parameters 7params does a probability distribution over n variables have,
each variable having at least d possible values?

Introduction m  For all variables binary (d = 2): nparams = 2" — 1
Bayesian networks B |n general: nparams =d" -1

e [ssues

° BN . . . . . . . . .

« BN example Two issues with full joint probability distribution:

e Independence

m [t is usually too large to be represented explicitly!

e Independence?

fgondigonal m [tis very hard to learn (estimate from data, or elicit from domain experts) the vast
m epen ence
number of parameters!

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary
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What’s wrong with the joint distribution?

How many free parameters 7params does a probability distribution over n variables have,
each variable having at least d possible values?

Introduction m  For all variables binary (d = 2): nparams = 2" — 1
Bayesian networks B |n general: nparams =q" —1

e [ssues

. BN . . . . . . . . .

« BN example Two issues with full joint probability distribution:

e Independence

m [t is usually too large to be represented explicitly!

e Independence?

® Conditional m [tis very hard to learn (estimate from data, or elicit from domain experts) the vast
mdependence
number of parameters!

e Quiz
e Causality

e Assumptions in BN Bayesian networks (BN) can represent (or approximate) complex joint distributions
* Independencein BN (models) using simple, local distributions (conditional probabilities), if we are willing to
impose some conditional independence assumptions on the domain.

e Causal chain
e Common cause
e Common effect

m  We describe how variables locally interact.

e D-separation

o D-sep examples m Local interactions chain together to give global, indirect interactions.
Inference m BN requires less parameters than full joint distribution.
Summary

m  The network structure and the local probability tables can be easilly elicited from
domain experts, or learned from less data.

Other names for BN:

m  Dbelief network, probabilistic network, causual network, knowledge map
m directed probabilistic graphical model
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What is a Bayesian network?

A full joint probability distribution can always be factorized into a product of conditional distributions

n
P(Xl,...,Xn) = HP(Xi|X1,.-.,Xi—1),
i=1

which can be simplified using (conditional) independence assumptions. In the extreme case, when all the
variables are independent, the above simplifies to

P(Xq,..., %) = ﬁp(xi).
i=1
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What is a Bayesian network?

A tull joint probability distribution can always be factorized into a product of conditional distributions

n
P(Xl,...,Xn) = HP(X{|X1,--.,X1'—1),
i=1

which can be simplified using (conditional) independence assumptions. In the extreme case, when all the
variables are independent, the above simplifies to

P(Xq,...,X%,) = ﬁp(xi).
i=1

Bayesian network is a probabilistic graphical model that encodes such a factorization. It is defined by a
directed acyclic graph (DAG) with

m a set of nodes representing the random variables,

m oriented edges representing the direct influences among variables, and

m (un)conditional probability distributions describing the probability distribution of each random variable
given all its parents (i.e., not given all the preceding variables).

BN represents the following factorization of the joint probability:

n
P(Xy,...,Xn) = [ | P(Xi|Parents(X;))
i=1
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What is a Bayesian network?

A tull joint probability distribution can always be factorized into a product of conditional distributions
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What is a Bayesian network?

A tull joint probability distribution can always be factorized into a product of conditional distributions

n
P(Xl,...,Xn) = HP(X{|X1,--.,X1'—1),
i=1

which can be simplified using (conditional) independence assumptions. In the extreme case, when all the

variables are independent, the above simplifies to

Bayesian network is a probabilistic graphical model that encodes such a factorization. It is defined by a
directed acyclic graph (DAG) with

P(Xq,...,X%,) = ﬁp(xi).
i=1

m a set of nodes representing the random variables,
m oriented edges representing the direct influences among variables, and

m (un)conditional probability distributions describing the probability distribution of each random variable
given all its parents (i.e., not given all the preceding variables).

BN represents the following factorization of the joint probability:

n
P(Xy,...,Xn) = [ | P(Xi|Parents(X;))
i=1
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What is a Bayesian network?

A tull joint probability distribution can always be factorized into a product of conditional distributions

n
P(Xl,...,Xn) = HP(X{|X1,--.,X1'—1),
i=1

which can be simplified using (conditional) independence assumptions. In the extreme case, when all the

variables are independent, the above simplifies to

Bayesian network is a probabilistic graphical model that encodes such a factorization. It is defined by a
directed acyclic graph (DAG) with

P(Xq,...,X%,) = ﬁp(xi).
i=1

m a set of nodes representing the random variables,
m oriented edges representing the direct influences among variables, and

m  (un)conditional probability distributions describing the probability distribution of each random variable
given all its parents (i.e., not given all the preceding variables).

BN represents the following factorization of the joint probability:

n
P(Xy,...,Xn) = [ | P(Xi|Parents(X;))
i=1

A particular BN (usually) cannot represent any joint distribution!
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Introduction

BN example

Bayesian networks

e [ssues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

P(B) P(E)

+b —b Burglary Earthquake +e —e
0.001  0.999 0.002  0.998
P(A|B,E)
B E +a —a
@ —b  —e 0.001 0.999
-b +e 029 0.71
+b —e 094 0.06
+b  +e 095 0.05
P(J14) P(M]A)
e oo o (el D oo o
—a 005 095 —a 001 0.99
+a 09 0.1 +a 0.7 0.3

P. Posik (© 2020
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BN example

P(B) P(E)

+b —b Burglary Earthquake +e —e
Introduction 0.001  0.999 0.002  0.998
Bayesian networks
e [ssues
e BN P(A|B,E)
e BN example B E +a —a

. Indepeﬂdeﬂce? @ —b —e 0.001 0.999

. ?de;)i.nderice- -b  +4e 029 0.71

e Conditiona

independence 0 o 0o 000
+b +e 095 0.05

e Quiz

e Causality

e Assumptions in BN

e Independence in BN P(”A) i P(M|A)
e Causal chain A T —J @ A m —n
e Common cause —a 0.05 0.95 —a 0.01 0.99
e Common effect +a 0.9 0.1 +a 0.7 0.3
e D-separation
e D-sep examples

Inference The joint probability is factorized by this BN as

Summary

P(B,E,A,],M) = P(B)P(E)P(A|B,E)P(J|A)P(M|A)
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BN example

P(B) P(E)

Introduction 0.001 0.999 0.002 0.998

Bayesian networks

e [ssues
e BN
e BN example

P(A|B,E)
B E +a —a
e Independence b 0.001 0.999
e Independence? @ - —¢ . :
S b +e 029 071
e Conditiona
independence +b —e 0.94 0.06
+b  +e 095 0.05

e Quiz

e Causality

e Assumptions in BN

e Independence in BN P(”A) . P(M|A)

e Common cause —a 0.05 0.95 —a 0.01 0.99
e Common effect +a 0.9 0.1 +a 0.7 0.3

e D-separation

e D-sep examples

Inference The joint probability is factorized by this BN as

Summary

P(B,E,A,],M) = P(B)P(E)P(A|B,E)P(J]|A)P(M|A)
What is the probability of +b, —e, —a, +j, —m?

P(+b,—e,—a,+j,—m) = P(+b)P(—e)P(—a| + b, —e)P(+j| —a)P(—m| —a) =
— 0.001-0.998-0.06-0.05-0.99 = 3-10°
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Independence

Two variables X and Y are independent (XL Y) iff

Introduction vx’y : P(X,y) - P(X)P(y),

Bayesian networks which 1mp11es that

e [ssues
e BN
e BN example

Vx,y: P(x|y) = P(x) and Vx,y: P(y|x) = P(y)

e Independence

e Independence? Independence as a modeling assumption:

e Conditional o . . . ) . )

independence m  Empirical distributions are at best “close to independence”; assuming independence
© Quiz may thus be too strong.

e Causality
o AssumptionsinBN @ Nevertheless, sometimes a reasonable assumption; what can we assume about

o Independence in BN variables Weather, Umbrella, Cavity, Toothache?
e Causal chain
o Common cause =  Example: Having n unfair, but independent coin flips:

e Common effect

m A general joint P(Xj, ..., X, ) with no assumptions has 2" — 1 free parameters.

e D-separation

o D-sep examples m P(Xy,...,Xy) factorized using independence assumptions to P(X7) - ... P(X;)
Inference has just n free parameters.
Summary
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How to check independence?

P(T)
T P
Introduction hO t 0.5
Bayesian networks cold 0.5
e Issues
e BN
e BN example P1 (T, W) P2 (T, W)
e Independence
e Independence? T w P T W P
_'Sondigonal hot sun 04 hot sun 0.3
I.HQTEED e hot rain 0.1 hot rain 0.2
« Causality cold sun 0.2 cold sun 0.3
e Assumptions in BN cold rain 0.3 cold rain 0.2
e Independence in BN
e Causal chain
e Common cause P(W)
e Common effect W P
e D-separation
e D-sep examples sun 0.6
rain 04
Inference
Summary ) . ) .. . ) ..
1. Compute marginal distributions of individual variables (P(T), P(W)) from the joint
distribution (P;).
2. Create a new joint distribution (P,) from the marginals assuming independence of the
variables.

3. Is the new joint the same as the original one? Then the variables are indeed
independent.
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Introduction

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

Conditional independence

Two variables X and Y are conditionally independent given another variable Z (X L Y|Z)

iff

Vx,y,z: P(x,y|z) = P(x|z)P(y|z),

which implies that

Vx,y,z: P(x|y,z) = P(x|z) and  Vx,y,z:P(y|x,z) = P(y|z)

Conditional independence as a modeling assumption:

It is our most basic and robust form of knowledge about uncertain environments.

In practice, measuring certain variable often breaks mutual influence of 2 other
variables (or vice versa, it introduces influence amonge variables that were originally
independent).

Conditional independence assumptions are very suitable to model real world!

P. Posik (© 2020
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Introduction

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

Quiz

Assume that random variables X and Y are (unconditionally) independent. Which of the
following statements about conditional independence is correct?

l X1y = X1Y | Z.. (Unconditional independence implies conditional independence.)
B XY ;5 XY | Z.. (Unconditional independence does not imply conditional independence.)
l X1y = X _M_ Y | Z.. (Unconditional independence implies conditional dependence.)

. None of the above is correct.

P. Posik (© 2020
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Introduction

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

Causality

Suppose we want to model 2 variables:

m  R: Does it rain?
m T:Is there high traffic?

Which of the 2 models is correct?

P. Posik (© 2020
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Causality

Suppose we want to model 2 variables:
m  R:Does it rain? ( : —— : )

Introduction m T:Is there high traffic?

Bayesian networks

o Issues Which of the 2 models is correct? @ ( >
e BN

e BN example

e Independence R | T
e Independence?
« Conditional m In this case for 2 variables, both models can represent any joint distribution over R
independence
. and T.
e Quiz
e Causality m  We prefer the causal orientation (rain influences/causes traffic, not vice versa) because
e Assumptions in BN . . . . . .
o Independence in BN m the structure is then more intuitive and describes how things work in the world;
Causal chai . . .
© e m the resulting BN is often simpler (nodes have fewer parents);
e Common cause
o Common effect m the conditional probabilities are easier to obtain.
e D-separation
o D-sep examples m In practice, BN needn’t be causal, especially when variables are missing.

Inference

m Imagine variables YellowFingers and Cancer. They are correlated, but neither
causes the other. Both are caused by smoking (which is a missing variable).

Summary

m  Arrows can reflect correlation, not causation.

= What do the arrows really mean?

m  They define BN topology which may happen to encode causal structure.

m BN topology defines the factorization of the joint distribution, i.e. the conditional
independence assumptions.
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Assumptions in BN

m  Each BN defines a factorization of the joint distribution.

m The factorization is possible due to (conditional) independence assumptions we are willing to make:

P(X;|Xy,...,X;_1) = P(X;|Parents(X;))

=  Beyond the above “chain rule — BN” explicit conditional independence assumptions, often
additional implicit assumptions exist. (They can be read off the graph.)

m  For modeling, it is important to understand all the assumptions made when the BN graph is chosen.
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Assumptions in BN

m  Each BN defines a factorization of the joint distribution.

The factorization is possible due to (conditional) independence assumptions we are willing to make:

P(X;|Xy,...,X;_1) = P(X;|Parents(X;))

=  Beyond the above “chain rule — BN” explicit conditional independence assumptions, often
additional implicit assumptions exist. (They can be read off the graph.)

m  For modeling, it is important to understand all the assumptions made when the BN graph is chosen.

panple & I W

m  This BN enforces the following simplification of the chain rule:
P(X)P(Y|X)P(Z|X,Y)P(W|X,Y,Z) = P(X)P(Y|X)P(Z|Y)P(W|Z)

m  Explicit assumptions from these simplifications:
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Assumptions in BN

m  Each BN defines a factorization of the joint distribution.

m The factorization is possible due to (conditional) independence assumptions we are willing to make:

P(X;|Xy,...,X;_1) = P(X;|Parents(X;))

=  Beyond the above “chain rule — BN” explicit conditional independence assumptions, often
additional implicit assumptions exist. (They can be read off the graph.)

m  For modeling, it is important to understand all the assumptions made when the BN graph is chosen.

panple & I W

m  This BN enforces the following simplification of the chain rule:
P(X)P(Y|X)P(Z|X,Y)P(W|X,Y,Z) = P(X)P(Y|X)P(Z|Y)P(W|Z)
m  Explicit assumptions from these simplifications:

P(Z|X,Y) = P(Z]Y) =  ZIX|Y
P(W|X,Y,Z)=P(W|Z) =  WIX,Y|Z

= Additional implicit assumption:
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Assumptions in BN

m  Each BN defines a factorization of the joint distribution.

m The factorization is possible due to (conditional) independence assumptions we are willing to make:

P(X;|Xy,...,X;_1) = P(X;|Parents(X;))

=  Beyond the above “chain rule — BN” explicit conditional independence assumptions, often
additional implicit assumptions exist. (They can be read off the graph.)

m  For modeling, it is important to understand all the assumptions made when the BN graph is chosen.

panple & I W

m  This BN enforces the following simplification of the chain rule:
P(X)P(Y|X)P(Z|X,Y)P(W|X,Y,Z) = P(X)P(Y|X)P(Z|Y)P(W|Z)
m  Explicit assumptions from these simplifications:

P(Z|X,Y) = P(Z]Y) =  ZIX|Y
P(W|X,Y,Z)=P(W|Z) =  WIX,Y|Z

= Additional implicit assumption:

WLX|Y
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Introduction

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

Independence in BN

Question about a BN:

Are certain 2 variables independent given certain evidence?

Can we answer this by studying local structures in BN?

Why is this question important?

Assume we want to answer query about X and we have evidence on Y.

If we can analyze the BN structure and find a set of variables Z which are
independent of X given Y, we can greatly simplify the inference (because Z has no
effect on X)!

D-separation

A condition/algorithm for answering such queries.
Study independence properties for triplets of variables.
Analyze complex cases in terms of the included triplets.

Triplets can have only 3 possible configurations which cover all cases:

m  “Causal chain” (linear structure)
s “Common cause” (diverging structure)
s “Common effect” (converging structure)

P. Posik (© 2020
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Introduction

Causal chain

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

()2

P(x,y,z) = P(x)P(y|x)P(z|y)

m  Example: low atmospheric pressure (X) causes rain (Y) which causes high traffic (Z).
m Are X and Z guaranteed to be independent?

m No.

®  You can easilly find a counterexample, i.e. CPTs for which X and Z are not
independent, i.e. they are not guaranteed to be independent.

m  But despite that, in some particular cases they can be independent. How?

m Are X and Z guaranteed to be independent given Y?
m YES!

o Pwa) _ POPWNPEY
PEy) =30y = " ppek) W)

= Evidence along the chain blocks the mutual influence between the two outer
variables.

P. Posik (© 2020
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Common cause

Introduction

Bayesian networks
e [ssues
e BN

e BN example

e Independence P(x,y,Z) — P(y)P(x|y)P(Z|y)

e Independence?

e Conditional
independence

m  Example: upcoming project deadline (Y) causes both high traffic on student fora (X)
and full computer labs (Z).

e Quiz
e Causality

o Assumptionsin BN @ Are X and Z guaranteed to be independent?
e Independence in BN

e Causal chain m No.
:Egﬁﬂiﬁ Z?;if ®  You can easilly find a counterexample, i.e. CPTs for which X and Z are not
o D-separation independent, i.e. they are not guaranteed to be independent.
e D-sep examples
Inference m Are X and Z guaranteed to be independent given Y?
Summary | YES!

P(x,y,2) _ P(y)P(x|y)P(z]y)

P(zlx,y) = s = =L P T — p(zly)
(x,y) (y)P(x]y)

m Evidence on the cause blocks the mutual influence between all effects.
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Common effect

Introduction

Bayesian networks
e [ssues
e BN

e BN example

e Independence P(x,y,Z) = P(x)P(Z)P(y|x,Z)

e Independence?

e Conditional
independence

m  Example: Rain (X) and a football match at nearby stadium (Z) both cause increased
o Causality traffic (Y).

o Assumptionsin BN @ Are X and Z guaranteed to be independent?
e Independence in BN

e Quiz

e Causal chain m Yes.

e Common cause

e Common effect

e D-separation P(X,Z) - Z X, ]// ZP |x Z) P(X)P(Z)
e D-sep examples y

Inference

m Are X and Z guaranteed to be independent given Y?

Summary
m NO!
m  Seeing traffic (i) puts the rain (X) and the football game (Z) in competition as
explanation.

m  The opposite of the previous 2 cases: observing an effect activates influence
between possible causes.

m  The influence is activated also when we observe any descendant of Y'!
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Introduction

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

D-separation

Question:

m  Are variables X and Y independent given evidence on Zg, ..., Z,
i.e. can we write X L Y|{Z;, ..., Z;}?

Answer:

m  Check all (undirected!) paths between X and Y.

m If all paths are inactive/blocked, we say that X and Y are d-separated by Z4, ..., Z;. Then

independence is guaranteed, i.e.

XAUY|{Z1,..., 7}

m  Otherwise, if at least one path is active, we say that X and Y are d-connected.

Independence is not guaranteed.
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B1LC|A?
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
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D-sep examples

B C|A? YES! Why?
m B, A,C blocked by evidence on A

Introducti . ..
ntroduction m B,G,F, E, Cnotactive — missing
Bayesian networks evidence on G

e Issues

e BN
e BN example
e Independence

e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary
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D-sep examples

B C|A? YES! Why?
m B, A,C blocked by evidence on A

Introducti . ..
ntroduction m B,G,F, E, Cnotactive — missing
Bayesian networks evidence on G

e Issues

e BN
e BN example AJ_LP‘E?
e Independence )

e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
m B, A,C blocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
m B, A,C blocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
m A,C,E, Fblocked by evidence on E

m A, B,G,F notactive — missing
evidence on G
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
m B, A,C blocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
m A,C,E, Fblocked by evidence on E

m A, B,G,F notactive — missing
evidence on G

CILD|F?
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
m B, A,C blocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
m A,C,E, Fblocked by evidence on E

m A, B,G,F notactive — missing
evidence on G

C_LD|F? NO! Why?
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary
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B C|A? YES! Why?
m B, A,C blocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
m A,C,E, Fblocked by evidence on E

m A, B,G,F notactive — missing
evidence on G

C_LD|F? NO! Why?

m C,A,B,G,F,E, D isblocked by
evidence on F and by missing
evidence on G

m C,E,D isactivated by the evidence
on F which is a descendant of E.
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D-sep examples

a B C|A? YES! Why?
m B, A,C blocked by evidence on A
Introduction m B,G,F, E, Cnotactive — missing
Ba}llesian networks evidence on G
e BN
BN example e e ALF|E? YES! Why?
e Independence
o Independence? m A,C,E, Fblocked by evidence on E
e Conditional
independence [ | A, B, G, F not active — missing
e Quiz evidence on G

e Causality
e Assumptions in BN
e Independence in BN

e Causal chain

C_LD|F? NO! Why?

e Common cause m C,A, B,G,F,E, D isblocked by
e Common effect . ..
S evidence on F and by missing
e D-separation .
e D-sep examples e evidence on G
Inference m C , E , D is activated by the evidence
Summary on F which is a descendant of E.

e G AL G|{B, F}? YES! Why?
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Introduction

D-sep examples

Bayesian networks

e Issues

e BN

e BN example

e Independence
e Independence?

e Conditional
independence

e Quiz

e Causality

e Assumptions in BN
e Independence in BN
e Causal chain

e Common cause

e Common effect

e D-separation

e D-sep examples

Inference

Summary

B C|A? YES! Why?
m B, A, Cblocked by evidence on A

m B,G,F, E, Cnotactive — missing
evidence on G

AL F|E? YES! Why?
m A,C,E, Fblocked by evidence on E

m A, B,G,F notactive — missing
evidence on G

C_LD|F? NO! Why?

m C,A,B,G,F,E, D isblocked by
evidence on F and by missing
evidence on G

m C,E,D isactivated by the evidence
on F which is a descendant of E.

Al G|{B, F}? YES! Why?
m A, B, G blocked by evidence on B
m A,C,E F,Gblocked by evidence on F
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Inference
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What is inference?

Inference

m  Calculation of some useful quantity from a joint probability distribution.

Introduction

= Examples:

Bayesian networks

m Posterior probability:

Inference

e Inference?

e Enumeration P(Q|E1 — 81,...,Ek — ek)
e Enumeration in BN
o Frumm vs VE = Most likely explanation:
e VE example

e Evidence in VE
o General VE argmax P(Q =q|Ey =e1,...,Ex =€)
e VE Example 2 q

e VE Comments

e Sampling

® Gibbs sampling General case: The set of all variables X3, ..., X, is formally divided into

Summary

m evidence variables Eq,...,Er =eq,...,¢,
m query variable(s) Q,
m hidden variables Hy, ..., H;,

® and assuming we know the joint P(X3, ..., X,;) we want to compute (e.g.)
P(Q‘El =e1,.. .,Ek = ek).

m How todoit?
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Inference by enumeration

Given the joint distribution P(Xy, ..., X,) = P(Q,Hy,...,Hy, E1, ..., Ey):

Introduction P(Q|€1,.- -,3k) — PI(DQ/ellﬂ .,ek)
Bayesian networks (61’ tecy ek)

Inference P(Q/elr- . -/ek) - Z P(thlr- . -/hr161/° . ~/ek)

e Inference? hl yooo iy

e Enumeration

e Enumeration in BN P(e]_l"'lek) — Z P(q/hlr---/hr/ell---/ek)
e Enum vs VE q;hlz---/hr

e VE example

e Evidence in VE

e General VE

e VE Example 2

e VE Comments

e Sampling

e Gibbs sampling

Summary
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Inference by enumeration

Given the joint distribution P(Xy, ..., X,) = P(Q,Hy,...,Hy, E1, ..., Ey):

_ P(Q,e1,...,e)

Introduction P(Q|ell e, ek)
P(ey,...,ex)
Bayesian networks
Inference P(Q,el,...,ek) — Z P(Q,hl,...,hr,€1,...,ek)
e Inference? hl;---/hr
e Enumeration
e Enumeration in BN P(eli---/ek) — Z P(q/hll-”/hr/el/---/ek)
e Enum vs VE q,hl,...,hr

e VE example

e Evidence in VE
e General VE

e VE Example 2

e VE Comments

This is computationally equivalent to:

1. From P(Q, Hy,...,Hy, Eq,...,Ey), select all the entries consistent with ey, .. ., e.

e Sampling
¢ Gibbs sampling 2. Sum out all H to get “joint” of Query and evidence:
Summary
P(Q,el,. . .,ek) = Z P(Q,hl,. . .,hr,el,. . .,ek)
hl,...,hr

3. Normalize the distribution:

1
P(Qlei, ..., ex) = ZP(Q,el,...,ek), where 7 = ZP(q,q,. k).

q

This is often written as P(Qley, ..., ex) g P(Q,e1, ..., ex).
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Enumeration in BN

m  Given unlimited time, inference in BN is easy.
= Example:

P(B| +j,+m) g P(B,+j, +m) = ZP(B,e, a,+j,+m) =
e,a

=Y P(B)P(e)P(a|B,e)P(+j|a)P(+m|a) = @

Artificial Intelligence — 28 / 38
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Enumeration in BN

m  Given unlimited time, inference in BN is easy.

= Example:

P(B| +j,+m) g P(B,+j, +m) = ZP(B,e, a,+j,+m) =
e,a

=Y P(B)P(e)P(a|B,e)P(+j|a)P(+m|a) =

What if the BN would be much larger?
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Enumeration in BN

m  Given unlimited time, inference in BN is easy.
= Example:

P(B| +j,+m) g P(B,+j, +m) = ZP(B,e, a,+j,+m) =
e,a

=Y P(B)P(e)P(a|B,e)P(+j|a)P(+m|a) = @

What if the BN would be much larger? Inference by enumeration would be

m very slow, because
m it first creates the whole joint distribution before it can sum out the hidden variables! Inference by
enumeration has exponential complexity!
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P. Posik (© 2020 petr.posik@fel.cvut.cz


petr.posik@fel.cvut.cz

Enumeration in BN

m  Given unlimited time, inference in BN is easy.
= Example:

P(B| +j,+m) g P(B,+j, +m) = ZP(B,e, a,+j,+m) =
e,a

— Y P(B)P(e)P(a|B, e)P(+jla)P(+ml|a) = @

What if the BN would be much larger? Inference by enumeration would be

m very slow, because
m it first creates the whole joint distribution before it can sum out the hidden variables! Inference by
enumeration has exponential complexity!

What about joining only such part of the distribution that would allow us to sum out a hidden variable as
soon as possible?

m Variable elimination: Interleave joining and marginalization!

m  Still worst-case exponential complexity, but in practice much faster than inference by enumeration!
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Enumeration vs Variable elimination (VE)

® R:Rain
T: Traffic

m L: Late for school
. P(L)=? P(R,T,L) = P(R)P(T|R)P(L|T)
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Enumeration vs Variable elimination (VE)

® R:Rain
m T: Traffic

m L: Late for school
. P(L)=? P(R,T,L) = P(R)P(T|R)P(L|T)

Inference by enumeration:

m  Build the full joint first.
m Then sum out hidden variables.

P(L) = ;ZP(LU) P(r)P(t|r)
Join on r: P(r,t)

A 7
~

Join on t: P(r,t,L)

N 7
Ve

Eliminate r: P(¢,L)

A 7
~"

Eliminate ¢: P(L)
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Enumeration vs Variable elimination (VE)

® R:Rain
m T: Traffic

m L: Late for school

s P(L)=2? P(R,T,L) = P(R)P(T|R)P(L|T)
Inference by enumeration: Inference by variable elimination:
m  Build the full joint first. m Perform a “small” join.
= Then sum out hidden variables. m Marginalize as soon as you can.

P(L) =YY P(L|t) P(r)P(t|r) P(L) = Zt:P(L|t) Y P(r)P(t]r)

L Join on r: P(r,t) Join on r: P(r,t)
Join on;:,P (r,t,L) Elimin;tre r: P(t)
Elimina’c;r r: P(t,L) Join on; P(t,L)
Elimina:; t: P(L) Elimina;; t: P(L)

P. Posik (© 2020
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VE example

Initial factors:

P(R)
@ +r 0.1
—r 09
P(T|R)
! +r 4+t 08
<'1> +r —t 02
—r 4+t 0.1
—r —t 09
P(L|T)
! 41 03
@ +t -1 0.7
—t +1 01
—t -1 09
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VE example

Initial factors:

& After join on R:
R) +r 01
-r 09 P(R, T)
+r 4+t 0.08
+r -t 0.02
—-r +t 0.09
—-r —t 081
P(T|R)
. tr 4+t 08
<'1> +r -t 02
—-r +t 01
-r —t 09
P(L|T) P(L|T)
: +t 4+ 03 +t 4+ 03
@ +t -1 07 +t =1 07
-t 4+ 01 -t +1 01
—t =1 09 —t -1 09
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VE example

Initial factors:

—P(R) After join on R:
R +r 0.1
_7—0'9 P(R,T) After eliminating R:
+r +t 0.08
+r  —t  0.02 P(T)
P(T|R)
2 fr 4+t 08
<7> +r -t 0.2
—r 4+t 0.1
—r —t 09
P(L|T) P(L|T) P(L|T)
’ Yt 41 03 it 41 03 4t 41 03
@ +t -1 07 +t =1 0.7 +t =1 0.7
—t 41 01 -t 41 0.1 —t 4+ 01
—t -1 09 —t =1 09 —t =1 09
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VE example

Initial factors:

ﬂ After join on R:
R +r 0.1
—r 09 P(R,T) After eliminating R:
+r +t 0.08
+r  —t 002 P(T)
—r +t 0.09 4+t 0.17
—r —t 0.81 —t 0.83
P(T|R)
2 tr 4t 08
<7> +r -t 0.2
—r 4+t 0.1
—r  —t 009 After join on T:
P(L|T) P(L|T) P(L|T) P(T,L)
: vt + 03 it 4+l 03 o+l 03 4+t +1 0051
@ +t -1 07 +t =1 0.7 +t =1 0.7 +t =1 0.119
—t 41 01 —t +1 01 —t 4+ 01 —t +I1 0.083
—t -1 09 —t =1 09 —t =1 09 —t =1 0.747
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VE example

Initial factors:

ﬂ After join on R:
R +r 0.1
—r 09 P(R,T) After eliminating R:
+r 4+t 0.08
+r  —t 002 P(T)
—r +t 0.09 4+t 0.17
—r —t 0.81 —t 0.83
P(T|R)
! tr 4t 08
<7> +r -t 0.2
—r 4+t 0.1
—r  —t 09 After join on T:
@ @ @ After eliminating T:
P(L|T) P(L|T) P(L|T) P(T,L) @
. vt + 03 it 4+l 03 o+l 03 4+t +1 0051 -
@ 4t -1 07 4t -1 07 4t -1 07 4t~ 0119 (L)
—t 41 01 —t +1 01 —t 4+ 01 —t +1 0.083 +1  0.134
—t -1 09 —t =1 09 —t =1 09 —t =1 0.747 -1 0.866
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Evidence in VE

If there is some Evidence in VE, e.g. if P(L| + r) is required:
m  Use only factors which correspond to the evidence, i.e. for the above example,

m instead of P(R), use P(+7),
— m instead of P(T|R), use P(T|+7),
o Inference? m use P(L|T) as before (evidence does not affect it).

e Enumeration

e Fnumerationin BN m Eliminate all variables except query Q and evidence e.

e Enum vs VE

Introduction

Bayesian networks

« VE example m  Result of VE will be a (partial) joint distribution of Q and e, i.e. for the above example,
o Evidence in VE we would get
e General VE
e VE Example 2
e VE Comments P(‘I—T, L) '
e Sampling
o Gibbs sampling m Toget P(L|+r),just normalize P(+r,L), i.e.
Summary

P(L|+7r) g P(+r,L).
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Introduction

Bayesian networks

Inference

e Inference?

e Enumeration

e Enumeration in BN
e Enum vs VE

e VE example

e Evidence in VE
e General VE

e VE Example 2

e VE Comments
e Sampling

e Gibbs sampling

Summary

General variable elimination

Query: P(Q‘El = €1,.. .,Ek = Bk)

1. Start with the initial CPTs, instantiated with the evidence e, . . ., .

2. While there are any hidden variables:
= Choose a hidden variable H.

= Join all factors containing H.

= Eliminate (sum out) H.

3. Join all remaining factors and normalize.

P. Posik (© 2020
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VE Example 2

Query: P(B| +j,+m) =7

1.

Start with the given CPTs corresponding to evidence +j, +m:

P(B) P(E) P(A|B,E) P(+jlA) P(+ml|A)

Choose hidden variable A and all factors containing it:

P(+]|A) Joinon A . Sum out A .
P(4+m|A) — " P(+4j,+m,A|B,E) " =" P(+j,+m|B,E)
P(A|B,E)

P(B) P(E) P(+j,+m|B,E)

Choose hidden variable E and all factors containing it:

P(E)

Join on E . Sum out E .
P(+j,+m|B,E)} = P(+j,+m, E[B) "=="" P(+], +m|B)

P(B) P(+j,+m|B)

No hidden variables left. Finish with B

P(B)

Join on B . Normalize .
P(+]',+m\B)} = P(+j,+m,B) "==""P(B| +],+m),

which is the result we were looking for.

P. Posik (© 2020 petr.posik@fel.cvut.cz
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VE Comments

= VE improves computational efficiency over enumeration by a clever ordering of
operations, in a way similar to replacing the computation of

Introduction

uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz

Bayesian networks

Inference with the equivalent computation of

e Inference?

e Enumeration

e Enumeration in BN (u + U) (w + .X') (y + Z)‘
e Enum vs VE

« VE example (Just a conceptual illustration.)

e Evidence in VE

I m  The computational and space complexity of VE is determined by the largest factor
« VE Example 2 (probability table) generated during the process.

e VE Comments

m  The elimination ordering can greatly affect the size of the largest factor.

e Sampling
« Gibbs sampling m  Does there always exist an ordering that only results in small factors? NO!
Summary m Inference in BN can be reduced to SAT problem, i.e. inference in BN is NP-hard. No

known efficient exact probabilistic inference in general.
m For polytrees, we can always find an efficient ordering!

m Polytree is a directed graph with no undirected cycles.
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Sampling

Due to the exponential (worst-case) complexity of enumeration and variable elimination,
exact inference may be intractable for large BNs. = Approximate inference using sampling.

Introduction

Sampling

Bayesian networks

Inference s Draw N samples from a sampling distribution S.

e Inference?

= Compute an approximate posterior probability.

e Enumeration

e Enumeraionin BN Show that this converges to the true probability P with increasing N.

e Enum vs VE

e VE example

e Evidence in VE Why Samp]ing?
e General VE
o VE Example 2 m Learning: get samples from a distribution you do not know.

:zfmi)ﬁ;ems m Inference: getting a sample is faster than computing the right answer (e.g. with VE).

e Gibbs sampling

Summary Sampling in BNs:

m Prior sampling: generates samples from joint P(Xj, ..., Xy).
m  Rejection sampling: generates samples from conditional P(Q|e).

m Likelihood weighting: generates samples from conditional P(Q|e). Better than
rejection sampling if evidence is unlikely.

m  Gibbs sampling: generates samples from conditional P(Q|e).
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Gibbs sampling

Procedure:

1. Start with an arbitrary instantiation (realization) x1, ..., x, of all variables consistent
Introduction with the evidence.

Bayesian networks 2. Choose one of the non-evidence variables (sequentially, or systematically uniformly),
Inference say x;, and resample its value from P(X;|x1,..., X1, Xi+1,...,Xn), i.e. keeping all the
* Inference? other variables and the evidence fixed.

e Enumeration

e Enumerationin BN 3. Repeat step 2 for a long time.
e Enum vs VE

e VE example

e Evidence in VE

e General VE

e VE Example 2

e VE Comments

e Sampling

e Gibbs sampling

Summary
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Introduction

Bayesian networks

Inference

e Inference?

e Enumeration

e Enumeration in BN
e Enum vs VE

e VE example

e Evidence in VE
e General VE

e VE Example 2

e VE Comments
e Sampling

e Gibbs sampling

Summary

Gibbs sampling

Procedure:
1. Start with an arbitrary instantiation (realization) x1, ..., x, of all variables consistent
with the evidence.

2. Choose one of the non-evidence variables (sequentially, or systematically uniformly),
say x;, and resample its value from P(X;|x1,...,x;_1,Xi11,...,X,), i.e. keeping all the
other variables and the evidence fixed.

3. Repeat step 2 for a long time.

Properties:

m  The sample resulting from the above procedure converges to the right distribution.
= Why is this better than sampling from the joint distribution?

m In BN, sampling a variable given all the other variables is usually much easier
than sampling from the full joint distribution.

®=  Only ajoin on the variable to be sampled is needed: this factor depends only on
the variable’s parents, its children and its children’s parents (Markov blanket).

m  Gibbs sampling is a special case of Metropolis-Hastings algorithm which belongs to
more general methods called Markov chain Monte Carlo (MCMC) methods.

m  Methods for sampling from a distribution.

m The samples are not independent; instead, the neighbors in their stream are very
similar to each other.

m  Yet, their distribution converges to the right one, and e.g. sample averages are
still consistent estimators.

P. Posik (© 2020
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Summary
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Competencies

After this lecture, a student shall be able to ...

1. explain why the joint probability distribution is an awkward model of domains with many random
variables;

2. define what a Bayesian network is, and describe how it solves the issues with joint probability;

3. explain how a BN factorizes the joint distribution, and compare it with the factorization we get from
chain rule;

4. write down the factorization of the joint probability given the BN graph, and vice versa, draw the
BN graph given a factorization of the joint probability;

5. explain the relation between the direction of edges in BN and the causality;

6. given the structure of a BN, check whether 2 variables are guaranteed to be independent using the
concept of D-separation;

7. describe and prove the conditional (in)dependence relations among variable triplets (causual chain,
common cause, common effect);

8. describe inference by enumeration and explain why it is unwieldy for BN;

9. explain the difference between inference by enumeration and by variable elimination (VE);
10. explain what makes VE more suitable for BN than enumeration;
11. describe the features (complexity) of exact inference by enumeration and VE in BN;
12.  explain how we can use sampling to make approximate inference in BN;

13. describe Gibbs sampling.
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