Quick intro to min-hash
UCU Winter School 2017

James Pritts

Czech Technical University

January 20, 2017
Jaccard similarity

\[J(A, B) = \frac{|A \cap B|}{|A \cup B|} \]

- Jim and Nancy have watched 100 movies and saw 50 of the same movies.
- If Jim’s movies are \(A \), and Nancy’s movies are \(B \), what is the \(J(A, B) \)?
Uses

- News aggregators
- Near duplicate detection
- Motion segmentation, multi-model fitting (avoid greedily choosing best model)
- Image Retrieval for near-duplicate detection
Images as sets

- Jaccard similarity is suitable to the bag-of-words model
- The representation is easily constructed by considering all non-zero visual words
MinHash signatures

- Problem, computing $J(A,B)$ is quadratic
- Set intersection and union are expensive operations
- Min-Hash signatures are computed for fast comparison
Hashing to shuffle

- Let x be the largest element in the set visual word.
- $h(x) = (ax + b) \mod c$
- Randomly choose a, b less the max value of x
- Choose a prime number c greater than max value of x
- Every integer x mapped to unique integer.
- Equivalent to quickly shuffling numbers.
Example

- Set $A = \{32, 3, 22, 5, 15, 11\}$
- Set $B = \{15, 30, 7, 11, 28, 3, 17\}$
- $J(A, B) = 0.3$

- What is the probability that the min-hash is the same for both sets?
- MinHash is equivalent to shuffling $A \cup B$ and taking the minimum.
- $J(A, B) = 0.3$
Min-hash signatures

- Generate a lot of hash functions
- Calculate min-hash for each signature
- Calculate the proportion of equal min-hash signatures
- Approx equal to Jaccard similarity.