
CZECH TECHNICAL UNIVERSITY IN PRAGUE

3D Scene Point Cloud Reconstruction
3D Computer Vision – Term Project

(CTU FEE subjects B4M33TDV, BE4M33TDV, XP33VID)

Martin Matoušek and Jaroslav Moravec

November 2024

CENTER FOR MACHINE
P E R C E P T I O N

Term Project

Phases:

1. Calibrated epipolar geometry (slides: 3–14)

2. Cameras and scene structure (slides: 15–28)

3. Stereo reconstruction (slides: 29–35)

TDV: 3D Scene Point Cloud Reconstruction 2/35

Calibrated Epipolar Geometry

Term project phases:

1. Calibrated epipolar geometry

2. Cameras and scene structure

3. Stereo reconstruction

TDV: 3D Scene Point Cloud Reconstruction 3/35

F

Task Outline

Task: Estimate the calibrated epipolar geometry.

1. Select one pair of images from the set below and download them from here.

2. Download keypoints and tentative correspondences (matches) between the
selected pair of views from here.

3. Use robust estimation (RANSAC/MLESAC) to find the essential matrix.

4. Show outliers and inliers of the epipolar geometry (as a needle map).

5. Select a reasonable sub-set of inliers (e.g., every n-th) and show
corresponding points and corresponding epipolar lines in both images
(use colors to show correspondence).

TDV: 3D Scene Point Cloud Reconstruction 4/35

http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1/images/
http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1/corresp/

Sparse Correspondences

The sparse correspondences for provided images has been precomputed and
they are available. Note, that the correspondences are tentative, so they may
contain mismatches.
The correspondences are stored in several files:

▶ detected image keypoints (here u_<id>.txt)

▶ 0-based indices of corresponding keypoints (here m_<i1>_<i2>.txt)

TDV: 3D Scene Point Cloud Reconstruction 5/35

Example: Working with correspondences

Keypoints in Image 1 Keypoints in Image 2 Correspondences
5.3 1613.4 6.3 1749.0 4 7 <---
7.0 364.8 8.4 1753.3 5 18285
9.5 1522.3 8.9 497.9 11 27631
9.9 585.1 10.4 540.9 . . .
10.9 571.7 <--- 11.0 683.2
11.2 578.6 11.0 687.8
11.3 666.1 11.1 589.8

. . . 11.3 583.4 <---
12.1 1212.6
12.2 949.3

. . .

Calibrated Epipolar Geometry

▶ Two views of the scene are related by a so-called essential matrix E:

E = [−t]×R,

where R and t are the rotation matrix and the translation vector from the
second view to the first view, respectively.

▶ All images were taken by the same perspective camera with known
calibration matrix K.

▶ Given two corresponding homogeneous image coordinates x ∈ I1 and
y ∈ I2, we get their normalized coordinates x′ and y′ as follows:

x′ = K−1x and y′ = K−1y.

Then it must hold that:
y′⊤Ex′ = 0.

▶ Acquired correspondences are tentative – can contain outliers and noise;
use robust estimation (RANSAC/MLESAC).

TDV: 3D Scene Point Cloud Reconstruction 6/35

Algorithm Overview

▶ Transform all keypoints from both images by (the common) K−1 to get
the normalized coordinates

K =

2080 0 1421
0 2080 957
0 0 1

.

▶ RANSAC iteration:

1. Randomly sample five correspondences
2. Estimate potential essential matrices (multiple solutions)
3. Decompose each E into (R, t) (four combinations)
4. Chirality: select the pair of rotation R and translation t, such that all five

reconstructed 3D points are in front of both cameras (at most one solution
(R, t) for each essential matrix).

5. For a given E and known K compute support using Sampson error with
original points

Note: From one set of five corresponding points, we get multiple hypothesis (E,R, t),
each needs to be verified separately

TDV: 3D Scene Point Cloud Reconstruction 7/35

Hypothesis Generation – Essential Matrix Estimation

▶ The matrix E (up to scale) has five degrees of freedom and can be
estimated from five normalized correspondences using a so-called 5-point
algorithm. Install the p5 package using PIP.

▶ Randomly sample five normalized correspondences x′(i) ∼ y′(i) and use the
5-point algorithm to estimate the essential matrix.
Multiple solutions may be returned.

TDV: 3D Scene Point Cloud Reconstruction 8/35

Hint: Install the external C++ library p5 with PIP

• Use PIP package manager to instal p5:
python3 -m pip install http://cmp.felk.cvut.cz/cmp/courses/TDV/code/python-p5-1.0.tar.gz

• To use the function p5.p5gb(...) in your code, simply:
import p5

Hint: Python

import p5
...
Sample five normalized correspondences xs∼ys
Es=p5.p5gb(e2p(xs), e2p(ys))

https://cmp.felk.cvut.cz/cmp/courses/TDV/code/python-p5-1.0.tar.gz

Hypothesis Generation – Essential Matrix Decomposition

▶ Each of the returned estential matrices yields one of four possible
combinations of rotation and translation. Here, we will refresh the steps of
the decomposition method from the lecture, see the slides for more details.

▶ Given an essential matrix E:

1. Compute SVD of E = UDV⊤ and verify that D = λ

1 0 0
0 1 0
0 0 0

 , λ ̸= 0.

2. Ensure that U and V are rotation matrices, set:

U = det(U) ·U and V = det(V) ·V

3. Compute the possible rotation matrix and translation vector as:

R(α) = U

 0 α 0
−α 0 0
0 0 1

V⊤, t(β) = −βU3,

where |α| = 1, β ̸= 0 and U3 is the third column of U.

▶ This decomposition yields four possible combinations of R and t for
combinations of α = ±1 and β = ±1.

TDV: 3D Scene Point Cloud Reconstruction 9/35

Hypothesis Generation – Chirality Constraint

▶ Set the first camera as canonical, i.e., P1 = K
[
I 0

]
, then the second one is

defined as P2 = K
[
R(α) t(β)

]
. Given the (same) five sampled

correspondences x(i) ∼ y(i) (i = 1, ..., 5), we perform triangulation with
numerical conditioning:

1. For the correspondence x(i) ∼ y(i) construct the system of linear equations:

D =


x
(i)
1 (p1

3)
⊤ − (p1

1)
⊤

x
(i)
2 (p1

3)
⊤ − (p1

2)
⊤

y
(i)
1 (p2

3)
⊤ − (p2

1)
⊤

y
(i)
2 (p2

3)
⊤ − (p2

2)
⊤

 , where (pj
i)

⊤ is the i-th row of Pj .

2. Re-scale the problem by a regular diagonal conditioning matrix S ∈ R4×4,
then:

0 = DX = DSS−1X.

3. Solve DSX′ = 0 for X′.
4. Compute the 3D point X = SX′.

(see slides from the lecture for more details)

▶ We then select such a combination of R and t, so that all points are in front of
both cameras. I.e.: (P1X

(i))3 > 0 ∧ (P2X
(i))3 > 0, ∀i = 1, ..., 5.

TDV: 3D Scene Point Cloud Reconstruction 10/35

Hint: Python

S=np.diag(1/np.max(np.abs(D), axis=0))
u,_,_=np.linalg.svd((D@S).T@(D@S))
X = (S@u[:, -1]) / (S[-1, :]@u[:, -1])

Consensus Verification

▶ Compute the fundamental matrix F from the found essential matrix E (to
estimate errors in pixels):

F = (K⊤)−1 EK−1.

▶ To verify the quality of each hypothesis, we will use the Sampson error. For a 2D
correspondence x ∼ y, its squared Sampson error is defined as:

εF(x,y)
2 =

(y⊤Fx)2

||SFx||2 + ||SF⊤y||2
, where S =

[
1 0 0
0 1 0

]
. (1)

▶ Use RANSAC (left) or MLESAC (right) support function.

TDV: 3D Scene Point Cloud Reconstruction 11/35

si =

{
1 if εF(x

(i), y(i))2 ≤ θ2

0 otherwise si =

{
1− εF(x(i),y(i))2

θ2
if εF(x

(i), y(i))2 ≤ θ2

0 otherwise

support =
∑

i si

Expected Results: Inlier Correspondences

Visualize the inliers (red) and outliers (black) of the estimated essential matrix
E∗ as a needle map. Given one selected correspondence x ∼ y, its needle
visualization on the first image can be done as follows:

TDV: 3D Scene Point Cloud Reconstruction 12/35

plt.scatter(x[0], x[1], 20, 'r')

plt.plot([x[0], y[0]], [x[1], y[1]], 'r-', linewidth=2)

Expected Results: Epipolar Lines

Visualize a subset of inliers as corresponding points and epipolar lines of the
estimated fundamental matrix F∗ = (K⊤)−1 E∗ K−1 (use the same color for
corresponding points and lines). Given one selected inlier 2D correspondence
x ∼ y, we get:

l1 = F∗⊤y and l2 = F∗x,

where l1 is the epipolar line in the first image and l2 is the corresponding
epipolar line in the second image.

TDV: 3D Scene Point Cloud Reconstruction 13/35

Toolbox Functions

▶ For this assignment, you should implement three toolbox functions, which
will be needed throughout the term project:

1. Linear triangulation with numerical conditioning
2. Essential matrix decomposition with chirality constraint
3. Sampson error estimation

▶ You can check your implementations of these toolbox functions through
automatic evaluation in BRUTE. In case of a mistake, you will be
prompted with the anticipated result for a given input.

TDV: 3D Scene Point Cloud Reconstruction 14/35

Toolbox

err = err_F_sampson(F, u1, u2)
Returns the squared (less computationally intensive) Sampson error for n homogeneous corresponding coordinates u1∼u2.

See (1). Inputs: F ∈ R3×3 ; u1, u2 ∈ R3×n . Output: err ∈ R1×n .

Toolbox

[R, t] = EutoRt(E, u1, u2)
Decomposes the given essential matrix E into rotation R and translation t (see slide 9). It returns the combination, which
fulfills the chirality constraint for n points u1 and u2 (see slide 10). If the chirality fails, it returns R = [].

Inputs: E ∈ R3×3 ; u1, u2 ∈ R3×n . Outputs: R ∈ R3×3 ; t ∈ R3×1 .

Toolbox

X = Pu2X(P1, P2, u1, u2)
Reconstructs n 3D points X from n corresponding 2D points u1 and u2 observed by two cameras P1 and P2, respectively.

See slide 10. Inputs: P1, P2 ∈ R3×4 ; u1, u2 ∈ R3×n . Output: X ∈ R4×n .

Cameras and Scene Structure

Term project phases:

1. Calibrated epipolar geometry

2. Cameras and scene structure

3. Stereo reconstruction

TDV: 3D Scene Point Cloud Reconstruction 15/35

Task Outline

Task: Estimate projection matrices and reconstruct a sparse point cloud.

1. Optimize the estimated rotation and translation between the first pair of
images w.r.t. Sampson error on inliers.

2. Use the Sampson correction on 2D inlier correspondences and then
reconstruct a sparse point cloud from them.

3. Download the rest of images, keypoints and correspondences (archive).

4. Iteratively append new cameras using the greedy stepwise gluing.

5. Show the estimated location and optical axis of each camera and (small
subset of) 3D points.

6. Create the reconstructed sparse point cloud
as ply/vrml.

TDV: 3D Scene Point Cloud Reconstruction 16/35

http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1.tar

Extrinsics Optimization on the First Pair

▶ Given estimated R∗ and t∗ from the previous assignment, find rotation
Ropt and translation topt so that the Sampson error on inliers is minimized.

▶ To ensure faster and stable optimization, look for a refinement Rr for R∗

and increment ti for t
∗. These should be applied in the error function as:

Ropt = R∗ Rr and topt = t∗ + ti.

▶ Rr: Use Rodrigues’ rotation formula (parameters Φ ∈ R3)1:

Rr(Φ) = I+
sin(φ)

φ
[Φ]× +

1− cos(φ)

φ2
[Φ]

2
× ,where φ = ||Φ||.

▶ ti: Use linear combination of two orthogonal vectors (parameters a, b ∈ R):

ti = ap+ bq, where p,q ∈ N(t∗).

▶ Normalize topt, so that the
length of base is unity.

1Note: limφ→0
sin(φ)

φ
= 1 and limφ→0

1−cos(φ)

φ2 = 1
2

TDV: 3D Scene Point Cloud Reconstruction 17/35

Hint: Python

N = scipy.linalg.null_space(t_rans.reshape((1, 3)))
p, q = N[:, 0], N[:, 1]

Triangulation Once Again: The Golden Standard Method

▶ Triangulate a 2D correspondence x ∼ y observed by cameras P1 and P2:
1. Given P1 =

[
Q1 q1

]
and P2 =

[
Q2 q2

]
,

estimate the fundamental matrix:

F = (Q1Q
−1
2)⊤

[
q1 − (Q1Q

−1
2)q2

]
× .

2. Use Sampson correction:

[
xc

yc

]
=

[
x
y

]
−

y⊤Fx

||SFx||2 + ||SF⊤y||2


(F1)

⊤ y

(F2)
⊤ y(

F1
)⊤

x(
F2

)⊤
x

 ,

where Fi is i-th column of F and
(
Fi

)⊤
is i-th row of F.

3. Use SVD triangulation algorithm with numerical conditioning from slide 10
on xc ∼ yc with cameras P1 and P2.

Toolbox

[nu1, nu2] = u_correct_sampson(F, u1, u2)
Estimates sampson-corrected coordinates based on the given fundamental matrix F from image points in homogeneous corrdinates u1∼u2.

Inputs: F ∈ R3×3 ; u1, u2 ∈ R3×n . Outputs: nu1, nu2 ∈ R3×n .

TDV: 3D Scene Point Cloud Reconstruction 18/35

Toolbox

[S] = sqc(x)
Estimates the skew-symmetric matrix for
cross-product.

Inputs: x ∈ R3×1 . Outputs: S ∈ R3×3 .

Toolbox

[F] = PP2F(P1, P2)
Estimates the fundamental matrix F from two
projection matrices P1 and P2.

Inputs: P1, P2 ∈ R3×4 .

Outputs: F ∈ R3×3 .

Initial Sparse Point Cloud Reconstruction

▶ Use the triangulation method from previous slide on inlier 2D
correspondences between the first pair of cameras with projection matrices
P1 = K

[
I 0

]
and P2 = K

[
Ropt topt

]
.

▶ Some of these points might still be false matches and not the actual inliers.
Let us thus keep only points that fulfill chirality (are in front of both
cameras) and apical angle constraints.

▶ Given a reconstructed 3D point X, we want it to have a sufficient apical
angle, i.e., larger than some threshold θα:

α = acos

(
(C1 −X)

⊤
(C2 −X)

||C1 −X|| ||C2 −X||

)
≥ θα,

where Ci is the location of the camera i in the world coordinate system.

Toolbox

[mask] = X_chirality_apical_angle(X, R_w1, t_w1, R_w2, t_w2, thr_a)
Returns a boolean array. It indicates 3D points from X that lie in front of cameras (R_w1, t_w1) and (R_w2, t_w2). The angle between two vectors
from X to each camera location must also be greater or equal to thr_a.

Inputs: X ∈ R4×n ; R_w1, R_w2 ∈ R3×3 ; t_w1, t_w2 ∈ R3×1 . Outputs: mask ∈ B1×n .

TDV: 3D Scene Point Cloud Reconstruction 19/35

Initial Sparse Point Cloud Reconstruction

▶ Use the triangulation method from previous slide on inlier 2D
correspondences between the first pair of cameras with projection matrices
P1 = K

[
I 0

]
and P2 = K

[
Ropt topt

]
.

▶ Some of these points might still be false matches and not the actual inliers.
Let us thus keep only points that fulfill chirality (are in front of both
cameras) and apical angle constraints.

▶ Given a reconstructed 3D point X, we want it to have a sufficient apical
angle, i.e., larger than some threshold θα:

α = acos

(
(C1 −X)

⊤
(C2 −X)

||C1 −X|| ||C2 −X||

)
≥ θα,

where Ci is the location of the camera i in the world coordinate system.

Toolbox

[mask] = X_chirality_apical_angle(X, R_w1, t_w1, R_w2, t_w2, thr_a)
Returns a boolean array. It indicates 3D points from X that lie in front of cameras (R_w1, t_w1) and (R_w2, t_w2). The angle between two vectors
from X to each camera location must also be greater or equal to thr_a.

Inputs: X ∈ R4×n ; R_w1, R_w2 ∈ R3×3 ; t_w1, t_w2 ∈ R3×1 . Outputs: mask ∈ B1×n .

TDV: 3D Scene Point Cloud Reconstruction 19/35

Working With Correspondences

▶ Download the rest of images, keypoints and correspondences (archive).

▶ This assignment requires to do some extensive work with tentative
correspondences, as these need to propagate from 2D-2D (image-to-image)
into 3D-2D (scene-to-image). We have prepared a corresp.py package,
which can help you with that.
▶ You can look at the API of the package and some more thorough

description and visualization in the documentation here.

▶ Start by loading all the tentative image-to-image correspondences into the
object.

Hint: Python

import corresp
...
NUM_OF_IMAGES = 12
corr = corresp.Corresp(NUM_OF_IMAGES)
for i in range(0, NUM_OF_IMAGES):

for j in range(i+1, NUM_OF_IMAGES):
corr.add_pair(i, j, np.loadtxt(

'scene_1/corresp/m_{:02d}_{:02d}.txt'.format(i+1, j+1)
).astype(dtype=np.int32)

)

TDV: 3D Scene Point Cloud Reconstruction 20/35

http://cmp.felk.cvut.cz/cmp/courses/TDV/data/scene_1.tar
http://cmp.felk.cvut.cz/cmp/courses/TDV/code/corresp_20201112.zip
http://cmp.felk.cvut.cz/cmp/courses/TDV/labs/gluing_correspondences.pdf

Initializing First Pair and Sparse Point Cloud

▶ Initialize the Corresp object with the filtered inliers from the first pair. It
automatically removes non-consistent image-to-image tentative
correspondences and establishes potential scene-to-image correspondences.

Hint: Python

i1, i2 = 0, 1 # indices of the first pair of cameras

P = np.zeros((NUM_OF_IMAGES, 3, 4))
P[i1,:,:] = K @ np.hstack([np.eye(3), np.zeros((3, 1))])
P[i2,:,:] = K @ np.hstack([R_opt, t_opt[:, None]])

F = toolbox.PP2F(P[i1], P[i2])
[nu1_h, nu2_h] = toolbox.u_correct_sampson(F, u1_h[:, inl_rans], u2_h[:, inl_rans])
X_pcl = toolbox.Pu2X(P[i1], P[i2], nu1_h, nu2_h)
inl_chir_api = toolbox.X_chirality_apical_angle(X_pcl, np.eye(3), np.zeros((3,)),

R_opt, t_opt, thr_a)
X_pcl = X_pcl[:, inl_chir_api] # initial filtered point cloud

idx = np.where(inl_rans)[0][inl_chir_api]
corr.start(i1, i2, idx)

TDV: 3D Scene Point Cloud Reconstruction 21/35

Stepwise Camera Gluing

▶ There are several different approaches to recover cameras extrinsics
(rotations and translations). We will use a simple greedy algorithm. The
method has been described in lectures (see Reconstructing Camera System
by Gluing Camera Triples).

▶ We have already initialized the set of cameras with the first pair and
reconstructed the initial point cloud. Now, we need to repeatedely append
cameras one-by-one, as follows:

1. Select new camera, which is suitable for appending based on some
(manually chosen) heuristic.

2. Use robust estimation to find the best (w.r.t. reprojection error) parameters
(R, t) from tentative 3D-2D correspondences (P3P algorithm).

3. Optimize the estimated extrinsics on inlier 3D-2D correspondences w.r.t.
reprojection error.

4. Reconstruct 3D points between the new camera and all other cameras with
already known projection matrices. Add inlier 3D points (fulfilling chirality
and apical angle constraints) into the sparse point cloud.

5. Verify the newly reconstructed points in other cameras.

TDV: 3D Scene Point Cloud Reconstruction 22/35

Estimation of a New Camera

▶ Select a new camera to append:
▶ e.g., the one with the most tentative

scene-to-image correspondences

▶ Get tentative 3D-2D correspondences
between the sparse point cloud and
the new camera image.

▶ Estimate the global pose and orientation of this new camera using the P3P
algorithm (our implementation).

Hint: Python

import p3p
...
Let us have tentative correspondences between X_pcl[:, X_idx]∼u[iNew][:, u_idx]
Sample three random correspondences Xw∼uc_h in homogeneous coordinates
X_cam_sols = p3p.p3p_grunert(Xw, K_inv @ uc_h) # multiple solutions to P3P problem
for X_cam in X_cam_sols:

R_new, t_new = p3p.XX2Rt_simple(Xw, X_cam) # get (R_new, t_new) for each solution

▶ Use RANSAC scheme with reprojection error on all tentative
scene-to-image correspondences to find the best (R, t).

TDV: 3D Scene Point Cloud Reconstruction 23/35

Hint: Python

ig, _ = corr.get_green_cameras()
Xu_count, _ = corr.get_Xucount(ig)
iNew = ig[np.argmax(Xu_count)]

Hint: Python

[X_idx, u_idx, _] = corr.get_Xu(iNew)

http://cmp.felk.cvut.cz/cmp/courses/TDV/code/p3p_20201112.zip

New Camera Refinement

▶ Perform a similar optimization of the rotation R and translation t as on
Slide 17. Use the reprojection error on inlier 3D-2D correspondences
between the pointcloud and image keypoints. Here, the scale is known
(from the first pair), hence the translation increment is simply ti ∈ R3.

Hint: Python

def err_reproj(params, Xs, us, R_rans, t_rans, K):
R = R_rans @ rodrigues(params[0:3])
t = t_rans + params[3:6]
X_proj = toolbox.p2e(K @ np.hstack([R, t[:, None]]) @ Xs)
return np.sum(np.linalg.norm(X_proj - us, axis=0))

▶ Save the new camera into the array:

Hint: Python

params = fmin(err_reproj, np.zeros((6,)), args=(X_pcl[:, X_idx][:, inl_rans],
u[iNew][:, u_idx][:, inl_rans], R_rans, t_rans, K))

R_opt = R_rans @ rodrigues(params[0:3])
t_opt = t_rans + params[3:6]
P[iNew, :, :] = K @ np.hstack([R_opt, t_opt[:, None]])
corr.join_camera(iNew, np.nonzero(inl_rans)[0])

TDV: 3D Scene Point Cloud Reconstruction 24/35

New 3D Points Reconstruction

▶ Iterate over already known cameras and get tentative image-to-image
correspondences, which were not used yet:

Hint: Python

ilist = corr.get_cneighbours(iNew)
for ic in ilist:

[miNew, mic] = corr.get_m(iNew, ic)

▶ Reconstruct new 3D points:
1. Estimate the fundamental matrix from the two projection matrices (see

Slide 18).
2. Use Sampson error to find actual inlier 2D-2D correspondences.
3. Use projection matrices to triangulate the inliers using the golden standard

method from Slide 18.
4. Choose only points that fulfill the chirality and apical angle constraints (see

Slide 19).
▶ Add new 3D points into the point cloud and update the correspondences.

Hint: Python

X_pcl = np.concatenate((X_pcl, X_new_h[:, inl_chir_api]), axis=1)
corr.new_x(iNew, ic, np.where(inl_samps)[0][inl_chir_api])

TDV: 3D Scene Point Cloud Reconstruction 25/35

Verify Consistency of New Points with Other Cameras

▶ Newly reconstructed points from previous slide might yeild a potential new
3D-2D correspondence with some other (already known) camera. We need
to verify them, before continuing the gluing.2

▶ Iterate over all cameras and verify new tentative 3D-2D correspondences:

Hint: Python

ilist = corr.get_selected_cameras()
for ic in ilist:

[X_idx, u_idx, Xu_verified] = corr.get_Xu(ic)
Find inliers based on the reprojection error between
X_pcl[:, X_idx][:, ~Xu_verified]∼u[ic][:, u_idx][:, ~Xu_verified]
...
corr.verify_x(ic, np.where(~Xu_verified)[0][inl])

▶ Finalize the appending of a new camera:

▶ Repeat from Slide 23, if there is still some unknown camera.

2Note: This verification is mainly needed, if you want to check the tentative 3D-2D
correspondences, e.g., before bundle adjustment. In this term project, you can skip this step
by calling corr.verify x(ic, []) on all known cameras.

TDV: 3D Scene Point Cloud Reconstruction 26/35

Hint: Python

corr.finalize_camera()

Expected Results: Cameras Locations and Optical Axes

▶ Show the location of each camera Ci = −R⊤
i ti with its optical axis (Ri)3.

Show the initial pair of cameras in different color. Show (small subset of)
the sparse point cloud as well.

TDV: 3D Scene Point Cloud Reconstruction 27/35

Expected Results: Sparse Point Cloud

▶ Save the final sparse point cloud in a .ply file, using geom export library.

Hint: Python

import ge
g = ge.GePly('out_sparse.ply')
g.points(toolbox.p2e(X_pcl)) # You can add color as a second argument 3xn
g.close()

▶ Use e.g., MeshLab to view the saved
point cloud and show it to us.

▶ Please, upload the sparse point cloud
in BRUTE as well (task E_sparse).

TDV: 3D Scene Point Cloud Reconstruction 28/35

http://cmp.felk.cvut.cz/cmp/courses/TDV/2010W/code/geom_export_20201203.zip
https://www.meshlab.net/#download

Stereo Reconstruction

Term project phases:

1. Calibrated epipolar geometry

2. Cameras and scene structure

3. Stereo reconstruction

TDV: 3D Scene Point Cloud Reconstruction 29/35

Task Outline

Task: Reconstruct a dense point cloud using stereo matching.
1. Select image pairs.
2. Rectify the pairs to align their epipolar lines.
3. Use a stereo matching method to compute disparity maps.
4. Reconstruct a dense 3D point cloud from the maps.
5. Save the reconstructed point cloud as ply/vrml.

TDV: 3D Scene Point Cloud Reconstruction 30/35

Stereo Rectification

▶ Let us have two images I1 and I2 with their projection matrices:

P1 = K
[
R1 t1

]
and P2 = K

[
R2 t2

]
.

▶ We can estimate the relative rotation and translation of the pair:

R1→2 = R2R
⊤
1 and t1→2 = −R2R

⊤
1 t1 + t2.

▶ Use our code to receive rectification homographies H1 and H2 and
rectified images:

[H1, H2, img1Rect, img2Rect] = rectify.rectify(img1, img2, K, R12, t12)

▶ Verify that the rectification aligned rows of images:

TDV: 3D Scene Point Cloud Reconstruction 31/35

https://cmp.felk.cvut.cz/cmp/courses/TDV/code/rectify.py

Stereo Matching

▶ Crop images to have the same size:

h = min(img1Rect.shape[0], img2Rect.shape[0])
w = min(img1Rect.shape[1], img2Rect.shape[1])
img1Rect, img2Rect = img1Rect[:h, :w], img2Rect[:h, :w]

▶ Select apropriate disparity range (for each pair):

min_disp, max_disp = -1000, 500

▶ Initialize SGBM stereo matching algorithm from OpenCV:

num_disp = int(2**np.ceil(np.log2(max_disp - min_disp)))
stereo = cv2.StereoSGBM.create(numDisparities=num_disp, minDisparity=min_disp,

blockSize=3, uniquenessRatio=30,
speckleWindowSize=100, speckleRange=5,
disp12MaxDiff=1, P1=8*3*3**2, P2=32*3*3**2)

▶ Add zero-padding and compute the stereo disparity map:

pad1 = np.zeros((h, max(0, num_disp+min_disp)), dtype=img1Rect.dtype)
pad2 = np.zeros((h, max(0, -min_disp)), dtype=img1Rect.dtype)
img1Rect = np.hstack((pad1, img1Rect, pad2))
img2Rect = np.hstack((pad1, img2Rect, pad2))
disparity = stereo.compute(img1Rect,img2Rect)[:, pad1.shape[1] : -pad2.shape[1]]

TDV: 3D Scene Point Cloud Reconstruction 32/35

Stereo Matching

▶ Visualize the disparity map (remove invalid disparities):

▶ SGBM returns disparities in int16 with 4-bit fixed decimal point, hence we
need to divide the disparity by 16:

disparity = disparity.astype(float) / 16.0

TDV: 3D Scene Point Cloud Reconstruction 33/35

Dense Point Cloud Reconstruction

▶ Given a 2D point
[
u v 1

]⊤
in the rectified image with a corresponding

disparity d, we obtain a correspondence:uv
1

 ∼

u− d
v
1


between rectified images.

▶ Use inverse homographies H−1
1 and H−1

2 to transform these corresponding
points into the original images.

▶ Use the original image projection matrices P1 and P2 to triangulate the
3D point (see 10).

▶ Add the triangulated point into the cloud, if it fulfills the chirality and
apical angle constraints (see 19).

▶ (Optional) Collect image color associated with each 3D point (project the
point onto all images, collect colors and use element-wise median).

TDV: 3D Scene Point Cloud Reconstruction 34/35

Expected Result: Dense Point Cloud

▶ Select all horizontal and vertical pairs of images and reconstruct the point
cloud.

▶ Save the final dense point cloud in a .ply file, using geom export library.

import ge
g = ge.GePly('out_dense.ply')
g.points(toolbox.p2e(X_pcl)) # You can add color as a second argument 3xn
g.close()

▶ Use e.g., MeshLab to view the saved
point cloud and show it to us.

▶ Please, upload the dense point cloud
in BRUTE (task E_dense).

▶ Upload all your term project code in
BRUTE as well (task E_codes).

TDV: 3D Scene Point Cloud Reconstruction 35/35

http://cmp.felk.cvut.cz/cmp/courses/TDV/2010W/code/geom_export_20201203.zip
https://www.meshlab.net/#download

