Question 1. (5 points)

Agent receives rewards as follows:

$$r_{k} = \begin{cases} 0; & \text{if } y_{k} = 0\\ 1; & \text{if } y_{k} = 1 \text{ and } k = 1\\ 2r_{k-1} \text{with probability } \frac{1}{2}; & \text{if } y_{k} = 1 \text{ and } k > 1\\ \frac{1}{2}r_{k-1} \text{with probability } \frac{1}{2}; & \text{if } y_{k} = 1 \text{ and } k > 1 \end{cases}$$

$$(1)$$

Determine $U^{y\leq 3}$ of $y_1=y_2=y_3=1$.

Answer:

There are four possible reward sequences $r_{\leq 3}$ each with probability $\frac{1}{4}$:

$$1, \frac{1}{2}, \frac{1}{4} \\
1, \frac{1}{2}, 1 \\
1, 2, 1 \\
1, 2, 4$$

Their respective sums are $\frac{7}{4}$, $\frac{10}{4}$, $\frac{16}{4}$, $\frac{28}{4}$. The mean value is thus $\frac{1}{4}(\frac{7}{4} + \frac{10}{4} + \frac{16}{4} + \frac{28}{4}) = \frac{61}{16}$

Question 2. (10 points)

Agent receives rewards as follows:

$$r_{k} = \begin{cases} 0; & \text{if } y_{k} = 0\\ 1; & \text{if } y_{k} = 1 \text{ and } k = 1\\ r_{k-1} + 1 & \text{with probability } \frac{1}{2}; & \text{if } y_{k} = 1 \text{ and } k > 1\\ r_{k-1} - 1 & \text{with probability } \frac{1}{2}; & \text{if } y_{k} = 1 \text{ and } k > 1 \end{cases}$$

$$(2)$$

Determine $U^{y_{\leq \infty}}$ of $y_{\leq \infty} = 1, 1, \dots$ for $\gamma = \frac{1}{2}$.

Answer:

Consider the conditional expected value of reward r_k in a reward sequence $r_{\leq m}$ of length $m \geq k$

$$\mathbb{E}(r_k|y_{\leq \infty} = 1, 1, \ldots) = \sum_{r_{\leq m}} P(r_{\leq m}|y_{\leq \infty} = 1, 1, \ldots) r_k$$

Since the condition $y_{\leq \infty} = 1, 1, ...$ is fixed by assumption, we drop it from the probability and expectation expressions. Due to the second case in (2), we have $\mathbb{E}(r_1) = 1$, and from the last two cases we have $\mathbb{E}(r_k) = \mathbb{E}(r_{k-1})$ for $k \geq 2$. So by induction

$$\mathbb{E}(r_k) = \sum_{r_{\leq m}} P(r_{\leq m}) r_k = 1 \tag{3}$$

for all $k \in \mathbb{N}$. The utility can now be computed as follows:

$$U^{y \le \infty} = \lim_{m \to \infty} \sum_{r \le m} \left(P(r \le m) \sum_{k=1}^m r_k \gamma^k \right) = \lim_{m \to \infty} \sum_{k=1}^m \gamma^k \sum_{\substack{r \le m \\ \text{otherwise}}} P(r \le m) r_k = \lim_{m \to \infty} \sum_{k=1}^m \left(\frac{1}{2} \right)^k = 1$$