
Question 1. (5 points)

Agent receives rewards as follows:

rk =


0; if yk = 0

1; if yk = 1 and k = 1

2rk−1with probability 1
2 ; if yk = 1 and k > 1

1
2rk−1with probability 1

2 ; if yk = 1 and k > 1

(1)

Determine Uy≤3 of y1 = y2 = y3 = 1.
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Question 2. (10 points)

Agent receives rewards as follows:

rk =


0; if yk = 0

1; if yk = 1 and k = 1

rk−1 + 1 with probability 1
2 ; if yk = 1 and k > 1

rk−1 − 1 with probability 1
2 ; if yk = 1 and k > 1

(2)

Determine Uy≤∞ of y≤∞ = 1, 1, . . . for γ = 1
2 .
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Question 3. (5 points)

Consider classification with Y = { 0, 1 }, where Pc(y
∗|x) is the probability that y∗ is the true class of x, and rewards are

given as

rk =


0 if y = y∗

−1 if y = 0 and y∗ = 1

−3 if y = 1 and y∗ = 0

Consider the policy
y(x) = arg max

y
Pc(y|x)

is this policy necessarily optimal, i.e. does it always coincide with the policy

π(x) = arg max
y

E (r | x, y)

? Justify your answer mathematically.
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Question 4. (2 points)

Discuss how the exploration-exploitation dilemma manifests itself in the concept learning scenario. Specify the conditions on
which the execution of random actions would (would not) be useful for a concept-learning agent.

4



Question 5. (2 points)

Consider an algorithm that learns monotone disjunctions (or monotone conjunctions) from n-tuples of Boolean attribute values
corresponding to n propositional variables. How can you use that algorithm to learn general disjunctions (or conjunctions)
without changing it? You may change the number of inputs. How will your solution change the mistake bound in the case
of the Winnow algorithm? Consider the number s of literals in the target disjunction constant.
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Question 6. (1 points)

Let h, h′ be propositional conjunctions. Is h′ |= h equivalent to h ⊆ h′? Justify your answer.
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Question 7. (4 points)

Let h, h′ be contingent propositional conjunctions that prescribe policies by

y = h(x) = 1 iff x |= h

We say that h at least as general as h′ if h(x) = 1 for any x ∈ X such that h′(x) = 1. Is it true that h′ |= h if and only if h
is at least as general as h′? Justify your answer.
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Question 8. (15 points)

Consider an algorithm learning in the mistake bound model. Prove that if the condition
∑∞
k=1 |rk| ≤ poly(nX) (nX ∈ N) is

satisfied, then from some time K ∈ N the agent will not make any mistakes, i.e.,

∃K ∈ N,∀k ∈ N : k > K → rk = 0
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Question 9. (3 points)

Give two examples of a non-contingent conjunction, one tautologically true and one tautologically false. Do the same for
disjunctions. Explain how an incomplete truth assignment to n propositional variables is represented by a conjunction and
decide whether such a conjunction may be tautologically false. Explain why Winnow does not learn from incomplete truth
assignments.
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Question 10. (5 points)

Show where the assumption that the target hypothesis is a monotone disjunction is needed in the proof of Winnow mistake
bound and explain how the proof would fail if assuming a general target concept on X = { 0, 1 }n.
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Question 11. (2 points)

Give the lgg for all pairs from
H = { p ∧ q,p ∧ ¬q,p ∨ q,p ∨ ¬q }

whenever the lgg is defined for the pair.
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Question 12. (3 points)

In concept classification, the generalization algorithm receives the sequence

x1, x2, . . . , x10

of observations (contingent conjunctions) where all xk with odd indexes (x1, x3, . . .) are positive examples, and all the others
are negative. The agent’s sequence of hypotheses is

h1, h2, . . . , h10

so if some hypothesis is unchanged for m time steps, then there is a subsequence of m identical hypotheses above.

Determine

1. whether h2 = x1 or h2 = x2 or none of these options;

2. the sequence of hypotheses for the same agent that receives observations

x1, x1, x3, x3, . . . , x9, x9
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Question 13. (10 points)

Let h, h′ be two propositional clauses or conjunctions. Show that lgg(h, h′) = Lits(h)∩Lits(h′) is a least general generalization
of h, h′.
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Question 14. (15 points)

Determine if

1. h ⊆θ h′

2. h′ |= h

for

h = p(x, y) ∧ p(y, z) ∧ ¬p(x, z)

h′ = p(a, b) ∧ p(b, c) ∧ p(c, d) ∧ ¬p(a, d)
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Question 15. (5 points)

Consider the following statements

1. X = non-self-resolving FOL clauses

2. X = contingent FOL clauses

3. There is no k ∈ N, x ∈ X such that hk |= x and hk 6⊆θ x, where hk (k ∈ N) are the hypotheses of the generalization
algorithm.

Decide for each of the implications 1 → 2, 1 → 3, 2 → 3, whether it is true. Change the relation hk |= x in (3) so that all
the implications you decided true are true when (1) and (2) assume conjunctions instead of clauses.
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Question 16. (1 points)

Find two different least general generalizations of p(a) and p(b)∨ p(c), prove that they are indeed generalizations of the two
clauses and prove that they are mutually θ-equivalent. Explain why two least general generalizations of the same pair of
clauses or conjunctions must be θ-equivalent.
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Question 17. (10 points)

Explain why the proof of the mistake bound n of the generalization algorithm is no longer valid when the assumption on X
is changed to X = non-self-resolving FOL conjunctions or non-self-resolving FOL conjunctions clauses, the relations ⊆,⊂ are
changed to ⊆θ,⊂θ (respectively), and we set n = |P|. Show that the proof cannot be rectified, in particular that no finite
mistake bound exists under said assumption even if F = ∅.
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Question 18. (3 points)

Determine the least general generalization of the following two assertions

1. Superman is mortal or he is not a human.

2. Every human who smokes is mortal.

by representing them as first-order logic clauses and computing their least general generalization with respect to the θ-
subsumption order, and express the result in natural language.
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Question 19. (2 points)

Let h, h′ be FOL clauses and B a ground FOL conjunction. Show that if h ⊆θ h′ then h ⊆Bθ h′.
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Question 20. (5 points)

Show that
h = parent(v2, v1) ∧male(v1)→ son(v1, v2)

and

g = son(v1, v2) ∨ ¬female(a) ∨ ¬parent(a, b) ∨ ¬parent(v2, v1) ∨ ¬male(b)∨
¬male(v1) ∨ ¬parent(v3, v4) ∨ ¬parent(b, c) ∨ ¬male(v4) ∨ ¬male(c)

are equivalent relative to
B = female(a) ∧ parent(a, b) ∧male(b) ∧ parent(b, c) ∧male(c)
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Question 21. (10 points)

Let

B =half(4, 2) ∧ half(2, 1) ∧ int(2) ∧ int(1)

x1 =even(4)

x2 =even(2)

1. Compute a least general generalization of x1, x2 observations relative to B .

2. Determine the reduction of the resulting clause relative to B and justify why it is indeed a reduction of it relative to B.
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Question 22. (10 points)

Let X contain Herbrand interpretations for a finite set of P predicates and a finite set F of functions, and the observation
complexity nX be the tuple (|P|, |F|). Show that the hypothesis class st-CNF (i.e., conjunctions of FOL clauses with at most
s literals and at most t term occurrences in each literal) is learnable online from X.
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Question 23. (2 points)

Consider a version-space agent whose initial hypothesis classH1 contains all non-contradictory conjunctions on 3 propositional
variables.

1. Determine |H1|.

2. Give an upper bound on |H2| given that r2 = −1.

23



Question 24. (2 points)

Let r≤K be a reward sequence of a standard agent and h≤K be its sequence of hypotheses. Denote M =
∑K
k=1 |rk|. Show

that there is a hypothesis h retained for at least K
M+1 consecutive steps in h≤K , i.e.

h≤K = h1, h2, . . . h, h, . . . h︸ ︷︷ ︸
at least K

M+1 times

, . . . hK
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Question 25. (5 points)

Let an agent PAC-learn C from X. Show that for any target concept from C on X, an arbitrary distribution P (x) on X
and arbitrary numbers 0 < ε, δ < 1 and K ∈ N, the condition err(hK) ≤ ε with probability at least 1− δ implies that hK is
consistent with all observations in x<K .
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Question 26. (5 points)

Let X contain all real numbers from [0; 1] which can be represented using 256 bits. Let H = X, and the decision policy given
by a h ∈ H is

h(x) = 1 iff x > h

Determine a k such that with probability at least 0.9, err(h) < 0.1, where h is an arbitrary hypothesis from H consistent
with k i.i.d. examples from X. Estimate it using:

1. ln |H|

2. VC(H)
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Question 27. (3 points)

Give a real-life meaning to binary random variables A,B,C, for which the following Bayes graph is appropriate

1. A©→ B©→ C©

2. A©→ B©← C©

3. A©← B©→ C©

For each case, decide if the graph implies A ⊥⊥P C | B.
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Question 28. (2 points)

How many parameters are needed in the Bayesian network below to fully specify a joint distribution on the random variables
in vertices, which are binary?
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Question 29. (5 points)

Given the Bayesian network below (conditional probability tables not shown),

Burglary Earthquake

Alarm

John calls Mary calls

1. (1 point) list all variables that ‘John calls’ is independent of, given that ‘Alarm’ is observed.

2. (4 points) express the probability that neither Mary nor John calls given that both burglary and earthquake happens,
using only those (conditional) probabilities which are encoded in the conditional probability tables appropriate for this
network. (Produce a formula referring to the random events by symbols such as A and their outcomes by symbols such
as b,¬m, etc.).
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Question 30. (5 points)

Let X1, X2, . . . ⊥⊥P Y1, Y2, . . . | E denote that ∀i, j ∈ { 1, 2, . . . } : Xi ⊥⊥P Yj | E . The empty set is denoted as ∅. Decide
(true/false) for each of the statements below whether it is implied by the Bayes graph for P :

1. Q ⊥⊥P X,Y, Z, P |W ,

2. Z, Y, P ⊥⊥P W,Q | ∅,

3. Z ⊥⊥P X,W,Q | ∅,

4. Z ⊥⊥P X,W,Q | P ,

5. Z, Y, P ⊥⊥P W,Q | X,
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Question 31. (15 points)

Consider the Bayes Network

A

P (a) = 0.5

B

P (b|a) = 0.5
P (b|¬a) = 0

C

P (c|b) = 0.5
P (c|¬b) = 0

D

P (d|c) = 0.5
P (d|¬c) = 0.1

E
P (e|b) = 0.5
P (e|¬b) = 0

1. Calculate P (a|d) and P (¬a|d) by the factor method, i.e., using factor multiplication and variable elimination.

2. Determine arg maxA,B P (A,B|d) by the factor method.
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Question 32. (8 points)

Consider a Markov decision process.

1. (3 points) Explain why a fixed (independent of x1, x2, . . .) sequence of actions as y1, y2, . . . (yk ∈ Y ) does not solve
a Markov decision process, i.e. cannot guarantee optimality in reinforcement learning. In which field of AI would a
fixed sequence of actions be an appropriate solution? Where is the boundary between game theory and reinforcement
learning?

2. (2 points) Recall the value iteration algorithm. This algorithm is based on a general method for solving a set of
equations. Give the name for this method and explain how it works in one or two sequences.

3. (3 points) Recall the policy iteration algorithm. This algorithm is based on another well known concept from machine
learning and statistics. Name this algorithm and explain its idea in one or two sequences. Provide an example of other
usages of this algorithm in computer science or mathematics.
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Question 33. (5 points)

We state the Bellman equations the following way:

U(x) = r(x) + γ max
y∈Y (x)

∑
x′

P (x′ | x, y)U(x′).

In some literature, you may find under the same name a different equation:

U(x) = max
y∈Y (x)

∑
x′

P (x′ | x, y)(r(x, y, x′) + γU(x′))

Describe in natural language the difference between the two formulations and decide if they are equally general, or else
describe which one is the more general and why.
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Question 34. (12 points)

Despite many reinforcement learning algorithms with additive rewards, it is common to use discounted rewards to model the
environment.

1. (1 point) Give the range for the discount factor parameter.

2. (1 point) How does the agent behave when γ = 0?

3. (2 points) Give an example of an environment where a high discount factor is a good choice and why. Do the same for
a low discount factor.

4. (3 points) In the case of the infinite horizon, discounting the rewards is necessary. Explain why.

5. (3 points) Imagine that your fancy reinforcement learning algorithm is not working on a chess game. Is it a good idea
to include the discount factor in grid-search on meta-parameters of your algorithm? If yes, explain why; if not, would
you still consider a range of discount parameter values and why?

6. (2 points) Suppose that
max
x∈X
|r(x)| = rmax.

Using only rmax and γ, give the tightest lower and upper bound on the cumulative discounted reward in a single episode.
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Question 35. (5 points)

Recall the learning rate parameter α of the temporal difference learning.

1. (1 point) Provide range for the α parameter.

2. (1 point) Explain the meaning of the α parameter.

3. (4 points) What must hold for α so that the temporal difference learning converges?

4. (1 point) Relate the temporal difference update rule

Û(x) := Û(x) + α
(
r(x) + γ · Û(x′)− Û(x)

)
to another well-known algorithm used in mathematical optimization.
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Question 36. (13 points)

In this problem, we will study the influence of learning rate α on the value estimates Û . All figures show learning of U
using the temporal-difference method for the same state over one million episodes. The learning rate was selected so that
the conditions for convergence were met.

1. (2 points) Explain what causes the spike that you see around episode 700000.

2. (2 points) Why do we need a different learning rate value for each state.

3. (6 points) Consider the following three scenarios of learning the value of a single state under a different learning rate.
Explain which situation you consider optimal and identify when the learning rate was too small or too big. Propose a
solution for the suboptimal cases.

4. (3 points) The learning rate is a function of number of visits of a state α(nx). Consider the following three functions

α1(nx) =
1

10 + nx
, α2(nx) =

3

2 + nx
, α3(nx) =

100

99 + nx
.

The figures in the question 3 were generated using those three learning rate functions. Match those functions to the
figures and explain your decision.
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Question 37. (10 points)

Consider the following MDP. Assume that reward is in the form r(x, y), i.e., r : X × Y 7→ R. Set γ = 1
2 .

x1 x2

switch

switch

stay stay, +1

Suppose that you have seen the following sequence of states, actions, and rewards:

x1, switch, x2, stay,+1, x2, stay,+1, x2, switch, x1, stay, x1, switch, x1, switch, x1, stay, x1, switch, x2, stay,+1, x2

1. (4 points) What is Ûπ(xi) calculated by the Direct Utility Estimation algorithm?

2. (2 points) What is transition model P estimated by the Adaptive Dynamic Programming algorithm?

3. (2 points) In the ADP estimates, some of the rare events might have zero probability, even though they are possible.
Provide a solution in which the rare events that the algorithm misses during learning have a non-zero probability.

4. (2 points) What are state values estimated by a Temporal Difference learning agent after two steps? Assume that
α = 0.1 and all values are initialized to zero.

[adapted from Richard Sutton’s 609 course, see http://www.incompleteideas.net/book/the-book-2nd.html]
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Question 38. (3 points)

Decide whether the following statement is true or false: If a policy π is greedy with respect to its own value function Uπ, then
this policy is an optimal policy. Explain your decision.

[adapted from Richard Sutton’s 609 course, see http://www.incompleteideas.net/book/the-book-2nd.html]
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Question 39. (5 points)

Do the following exploration/exploitation schemes fulfill the ’infinite exploration’ and ’greedy in limit’ conditions? Which
lead to the convergence of Q-values in Q-learning and which lead to the convergence of Q-values in SARSA. Does anything
change if we are interested in the convergence of policy? nx,y denotes the number of times when action y was taken in state
x. ny is defined similarly.

1. a random policy

2.

π(x) =

{
y, if nx,y ≤ 100,

arg maxy Q(x, y), otherwise.

3. ε-greedy policy with ε = 1
n2
x

4. ε-greedy policy with ε = 1,000
999+nx

5. ε-greedy policy with ε = 1√
nx
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Question 40. (5 points)

Consider the following MDP with γ = 0.8, r(5) = 100, r(·) = 0.

1

2

0

3

4

5

100

100

100

The initial matrix of Q-values is

Q̂(x, y) =


− − − − 0 −
− − − 0 − 0
− − − 0 − −
− 0 0 − 0 −
0 − − 0 − 0
− 0 − − 0 0

 .

Consider path 1 − 5 − 1 − 3 and constant learning rate α = 0.1. Show changes in Q values after the agent-environment
interaction for the Q-learning algorithm.

[adapted from Richard Sutton’s 609 course, see http://www.incompleteideas.net/book/the-book-2nd.html]
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Question 41. (10 points)

Consider an active reinforcement learning algorithm implemented by SARSA or Q-learning.

1. (2 points) Unlike the temporal difference learning, SARSA and Q-learning algorithms learn Q values instead of U . Why
is U not enough?

2. (3 points) Explain why those algorithms need to balance exploration vs. exploitation. What those terms mean, and
which of those is preferred early in the learning.

3. (2 points) SARSA and Q-learning are guaranteed to converge to an optimal policy if both:

• convergence criteria for learning rate α known from TD-learning are met, and

• convergence criteria on the explore-exploit policy are met.

What are those criteria placed on the explore-exploit policy?

4. (1 point) Provide an example of an explore-exploit policy that guarantees policy convergence for SARSA and Q-learning.

5. (2 points) Will one of the algorithms learn Q-values even if one of the conditions is not met? If yes, which and why, if
not, explain.
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Question 42. (10 points)

Consider an active reinforcement learning algorithm. You are not told whether it is an instance of SARSA or Q-learning.
The implementation met all convergence criteria. All plots shown below are related to the same state-action pair Q-value,
i.e., Q̂(x, y). The action y is suboptimal in state x. The used explore-exploit policy was the ε-greedy policy, i.e., with
probability ε a random action is selected; otherwise, the agent behaves greedily.

Now, consider four different situations of learning Q-values over 100 000 episodes.

1. 2.

3. 4.

1. (4 points) Four plots below show how many times action y was selected by the agent in state x. For example, point
(1000, 6) means that the action y was selected 6 times in state x over the first 1000 episodes.
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a. b.

c. d.

Match figures a-d to figures 1-4. Explain your decision.

2. (2 points) The ε was set as a function of the number of visits of state x. Relate the following four functions to the
figures 1-4.

i. ε(nx) = 8
7+nx

ii. ε(nx) = 3
2+nx

iii. ε(nx) = 100
99+nx

iv. ε(nx) = 1000
999+nx

Match those policies to figures 1-4. Explain your choice.

3. (1 point) Why should agents use different epsilon for different states.

4. (2 points) Decide whether the learning algorithm used was SARSA or Q-learning. Explain your decision.

5. (1 point) What is Q(x, y)? Explain your answer.
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