1 Prerequisites

You should have a basic understanding of probability theory, combinatorics and formal logic – propositional and first order. Here are a few questions you should be able answer quickly and without much thinking.

- What is a possible computer representation for a propositional interpretation (a.k.a. truth valuation)?
- What are the conjunctive and disjunctive normal forms?
- If I is an interpretation and ϕ is a formula, what does $I \vDash \phi$ mean?
- Prove that conjunction is associative in propositional logic.
- Rewrite the formula $(a \wedge b) \implies c$ to an equivalent clausal form.
- What does it mean when we say we take samples i.i.d.?

2 Exercises

Motivation The homework that will follow is essentially a computer implementation of the following exercises. If you manage to solve them, the homework should be easy for you.

Definitions A monotone conjunction (resp. disjunction) is a conjunction (resp. disjunction) of a number of propositional variables. In other words, it's a term (resp. caluse) with positive literals only. An *s*-clause is a clause containing at most *s* literals. An *s*-CNF is a conjunction of *s*-clauses.

Exercise - combinatorics Assume a propositional logic with n variables. Compute the following combinatoric problems:

- What is the number of monotone conjunctions? (No duplicate literals)
- What is the number of non-equivalent conjunctions?
- What is the number of *s*-CNFs? (No duplicate clauses) Break down the calculation to the following steps:
 - What is the number of caluses of length exactly s?
 - What is the number of *s*-caluses?
 - Apply an earlier result.

Theoretical exercise - generalizing algorithm Study the generalizing algorithm. Find answers to the following:

- The basic algorithm learns monotone conjunctive concepts from a set of propositional interpretations. How can you reduce the learning of non-monotone conjunctive concepts (i.e. terms) to the simpler monotone case?
- Using a similar idea, how could you reduce the learning of s-CNFs to the learning of monotone conjunctions?
 - Hint 1: Terms are actually 1-CNFs.
 - Hint 2: This is similar to the technique of polynomial expansion of features used in classical machine learning.
- Using De Morgan's laws, how can you alter the algorithm to learn monotone disjunctions instead?

Exercise - generalizing algorithm example Imagine a zoologist provides you with a dataset of animals and some of their observed features. Each animal is labeled whether it is or is not a mammal. You are to learn a mammal concept from the features, using the generalization algorithm. Emulate the generalization algorithm. First learn a conjunctive concept (non-monotone). Then learn a disjunctive concepts. Answers are on the next page.

	Bat	Dolphin	Earthworm	Bee	Carp	T-Rex	Penguin	Parrot	Goat	Platypus	Elephant	Frog	Hippo
Flies	\checkmark			\checkmark				\checkmark					
Hair	\checkmark								\checkmark	\checkmark			
Fins		\checkmark			\checkmark					\checkmark		\checkmark	
Feathers							\checkmark	\checkmark					
Scales					\checkmark	\checkmark							
Breathes air	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark							
Bones	\checkmark	\checkmark			\checkmark								
Funky nose		\checkmark									\checkmark		
Mammal	\checkmark	\checkmark							\checkmark	\checkmark	\checkmark		\checkmark

The correct answers are: $C_1 = \neg \text{Feathers} \land \neg \text{Scales} \land \text{Bones} \land \text{Breathes air}$ (conjunctive) and $C_2 = \text{Hair} \lor \text{Funky nose}$ (disjunctive). Knowing this, explain the following:

- Only one of the following is true. Determine which one and find a counterexample to the other.
 - Mammal $\models C_1$
 - $-C_1 \models Mammal$
- Only one of the following is true. Determine which one and find a counterexample to the other.
 - Mammal $\models C_2$
 - $-C_2 \models Mammal$