Proper PAC-Learning

We have shown s-term DNF (s-clause CNF, respectively) to be
learnable online from X = {0,1}" because it is a subset of the class
s-CNF (s-DNF) which is learnable (by a standard agent) from X.

So by Theorem @D, the two classes are also PAC-Learnable from X,
which means that the agent finds a hypothesis hk such that err(hk) < €
with probability at least 1 — § where K < poly(%, %, nx).

hk is a s-CNF (s-DNF) and generally, it cannot be rewritten into an
equivalent s-term DNF (s-clause CNF).

We will define a stronger version of PAC-learning which requires that hy
belongs to the hypothesis class from which the target hypothesis is chosen.

Concept Learning

Proper PAC-Learning

Proper PAC Learning Model

Let H be a hypothesis class. An agent (efficiently) properly PAC-learns
H from an observation class X if all conditions for (efficient) PAC-learning
of C(H) are satisfied, and, in addition, for the hy in the definition it holds
hik € H. A hypothesis class # is (efficiently) properly PAC-learnable
from X if there is an agent (efficiently) properly PAC-learning H from X.

v

Proper PAC-learning is important e.g. when hy is to be interpreted by a
human and its membership in H guarantees readability.

Concept Learning

Efficiently Properly PAC-Learnable Classes

Given Theorem @D, a hypothesis class H is efficiently properly
PAC-learnable from X if there is a standard agent that efficiently learns H
online from X and the hypotheses hy the agent uses as decision policies
are all from H.

For example, conjunctions (clauses, respectively) are efficiently properly
PAC-learnable from X = {0,1}" or from X = contingent conjunctions
(clauses) because they are learnable online efficiently with the
generalization algorithm, and all hy are conjunctions (clauses). (Unlike
Winnow, where hy are hyperplanes!)

Concept Learning

(Non)-Learnability of s-term DNF and s-clause CNF

We already know that s-term DNF is efficiently learnable online from

X ={0,1}" by a standard agent thus also efficiently PAC-learnable from
X. It is also properly PAC-learnable from X due to Theorem @) and the
fact that Ig |s-CNF| < poly(n) and C(s-term DNF) C C(s-CNF).

The same holds analogically for s-clause CNF. Are these classes also
efficienty properly learnable?

None of s-term DNF and s-clause CNF is efficiently properly

PAC-learnable from X = {0,1}"

Proof: We will show the proof only for the special case of 3-term DNF.
The NP-complete @&=phiasisingpoblend can be reduced in poly-time to finding
an 3-term DNF consistent with a finite set of observations.

Concept Learning

https://en.wikipedia.org/wiki/Graph_coloring

3-term DNF's are not efficiently properly PAC-learnable.

/ 0if =i
vertex v; <> pos. example x, x' =)
1 otherwise
/ Qif lI=iorl=j
edge e <> neg. example x, x' =)
1 otherwise

Concept Learning

3-term DNF's are not efficiently properly PAC-learnable.

Graph 3-colorable iff a 3-term DNF consistent with the observations.

=

V A p,*

color € v; not of
[R.C. } color *

P1 A P2 APsADs

~=

color of any consistent term

3-colorability NP-hard — finding a consistent 3-term DNF NP-hard.

M racu
OF ELECTRICAL
IN
AGUE

Concept Learning

s-Decision Trees

Example:

/\
/\

3-Decision Tree

A decision tree on X = {0,1}" is a binary tree
graph where each non-leaf vertex indicates one
of the n components, each leaf is a class from
Y, and each edge is labeled 0 or 1.

It prescribes a policy for x € X: go from the
root, always following one of the two outgoing
edges that is labeled with the value of the
component in the last vertex, until in a leaf.
The leaf is the decision.

For example, x = (0,1,0,1,1) is decided as

y = 0 by the tree on the left.

An s-decision tree has depth s or less.

FACULTY
nnnnnnnnnnnn
ENGINEERIN: G
CTU'IN PRAGUE

Concept Learning

PAC-Learnability of s-Decision Trees

The class s-Decision trees is PAC-learnable from X = {0,1}" efficiently or
properly but not efficiently properly.

Proof: For any s-DT, there is an equivalent s-DNF: create an
s-conjunction for each tree's path from the root to a “1" leaf. E.g.
this tree corresponds to the 3-DNF p3 V (=p3 A —ps). So

C(s-DT) C C(s-DNF) (1)

s-DNF is efficently learnable online by a standard agent and thus also
efficiently PAC-learnable. So the agent can efficiently PAC-learn s-DT
using s-DNF. Thus s-DT is efficiently PAC-learnable.

Concept Learning

PAC-Learnability of s-Decision Trees (cont'd)

s-DT is also properly PAC-learnable by a s-DT-consistent agent according
to Theorem @D due to Ig|s-DT| < poly(nx) where nx = n. Indeed,
|1-DT| = 2 because there are exactly two options { 0,1} for the single
vertex (leaf) of it. So

lg|1-DT|=1Ig2=1 (2)

For s > 1, |(s + 1)-DT| = n|s-DT|? (n options for the vertex and |s-DT]|
options for each of the two subtrees). Take the logarithm of the equation:

lg|(s+ 1)-DT| =Ign+2lg|s-DT| (3)

(2) and (3) form a recursive prescription of a geometric series whose
solution is Ig |s-DT| = (2° — 1)(1 + Ign) + 1 < poly(n).

Concept Learning

PAC-Learnability of s-Decision Trees (cont'd)

Finally, finding an s-tree consistent with a finite set of observations is an
NP-complete problem. We omit the part of the proof showing this but
refer to the analogical proof for s-term DNF following Theorem @@p.

Thus the class s-DT is not efficiently properly PAC-Learnable, which
completes the proof.

Note: similarly to @», we also have

C(s-DT) C C(s-CNF) (4)

Given an s-DT, one creates a clause for each path from root to a “0" leaf,
e.g. this tree corresponds to the single-clause 3-CNF p3 V —ps.

FACULTY

nnnnnnnnnnnn
ENGINEERIN: G
CTU'IN PRAGUE

Concept Learning

Example:

pP1 A p3
P2
—p1
0

2-Decision list

0
1

1
0

An s-Decision list on X = {0,1}" is a list
of pairs (c,y) where c is an s-conjunction
using variables from p1,p2,...,pn and
yeyY.

The last conjunction in the list is empty and
the corresponding y is called the default
class.

It classifies an x € X into class y; where
(ci, yi) is the first pair in the list such that
X): Ci.

For example, x = (1,1, 1) is classified into 1
by the decision list on the left.

eacutry

]@ OF ELECTRICAL
i
o

Concept Learning 11/19

PAC-Learnability of s-Decision Lists

The class s-Decision lists is efficiently properly PAC-learnable from

X ={0,1}".

We will present an s-DL-consistent algorithm known as the covering
algorithm for efficient finding of an s-DL hypothesis hx11 consistent with

X<k-

Let Ter1 =9 (x1,¥1), (2, ¥2)s - -+, (Xk, Vi) } where y; (1 < i < k) is the
true class of x;. Tyy1 is called a training set (at time k + 1).

Note that the agent knows all elements of Tj; because it has seen all of
the x; and the y; can be determined as y; = |y; + ri1].

Concept Learning

Finding a Consistent s-Decision List

Require: training set T
1. L:=]] (empty list)
2: while T # () do
3 ¢ = any s-conjunction true for some positive and no negative
example in T, or some negative and no positive example in T
(respectively)
Remove samples covered by ¢: T:=T\{(x,y)e T : x| =c}
if T =20 then
append (0,1) or (0,0) (respectively) to L.
else
append (¢, 1) or (c,0) (respectively) to L
0: end if
10: end while

®© N g

e G
c ue
Concept Learning 13 /19

PAC-Learnability of s-Decision Lists (cont'd)

‘S—DLl — 3|s—conJunct|ons|!

because each s-conjunction can be absent from the list, present with
y = 0 or present with y = 1 (hence the base 3), and they can be arranged
in an arbitrary order (hence the factorial).

We know that |s-conjunctions| < poly(n). So we have
lg |s-DL| < poly(n)

So by Theorem @D, the s-DL-consistent covering algorithm PAC-learns
s-DL. Since it is efficient and the output is an s-DL, it does so efficiently
and properly, which finishes the proof.

e
Concept Learning 14 /19

s-Decision Lists (cont'd)

Every s-DNF has an equivalent s-DL constructed as follows

e for each s-conjunction ¢ from the s-DNF, add (c,1) to the s-DL
e add (0,0) to the s-DL

so
C(s-DNF) C C(s-DL)

s-DL is closed under negation, i.e., for any h € s-DL, also —h € s-DL (just
flip the zeros and ones for all the y; in h). Each s-CNF is the negation of
some s-DNF. Therefore also

C(s-CNF) C C(s-DL)

Concept Learning

Hierarchy of Size-Bounded Propositional Classes

uwuv

sucmssnmc
uuuuuuuuuuu

Concept Learning 16 /19

Inconsistent Learning

Consistent learning may not be possible when @ does not hold or when
rewards rx1 are not deterministic as in @D but depend only
probabilistically on xx and yxi1. The latter case corresponds to learning from
“noisy data.”

Define the training error err(hy1) (k € N) of hypothesis hx11 as

=

k
1
ert(hir1) = 7 3 [his1(xi) — il (5)
i=1

where y; is the true class of x;. So err(hx.1) is the proportion of
observations from x< that hy1 is not consistent with.

Note that ert(hy1) is in general not equal to Zf;l |ri| since actions y;,
1 < i < k were decided by hypotheses other than hy1.

Concept Learning

Inconsistent Learning (cont'd)

The following lemma a direct consequence of the well-known
Hoeffding inequality.

Lemma 1

Let {z1,22,...,2m } be a set of i.i.d. samples from P(z) on {0,1}. Then
the probability that !P(l) —-Lism z,-| > € is at most 2e 2.

| 3
\

Theorem 4

Let hxy1 € H (Vk € N) where H is a hypothesis class. With probability at
least 1 — 0

_ 1 2/
lerr(hxs1) — err(hgs1)] < 5% In % (6)

Concept Learning

https://en.wikipedia.org/wiki/Hoeffding%27s_inequality

Inconsistent Learning (cont'd)

Proof of Theorem @: by assumption, xi, X2, .. ., Xk, are i.i.d. from @D,
thus for a given hy11 € H,

|hkr1(xa) = Yals [herr(xa) = Vals - - - [her1(xk) — Yl

where y; are the true classes of xj is an i.i.d. sample from a P(.) on

{0,1} where P(1) = err(hx+1). Thus given @D and Lemma @D, the
probability that

lerr(hi41) — erf(hes1)| > €
is at most 2e 2<% The probability that the above is true for some
hk+1 € H is thus at most]’H|2e‘252k. Setting |’H|2e‘2€2k =0 yields
L In —2|H‘
2k o
which completes the proof.

Concept Learning

	Introduction
	Concept Learning

