
Classification

Classification is a special case of the agent-environment interaction
defined by two assumptions

1 Y is finite

2 rewards are instant (??)

Elements of Y are called classes.

Similarly, for ‘regression’ we would replace the first condition with Y = R. We do

not elaborate regression in this course.

(exercise problem)

Introduction 1 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.classification-optimal

Example: Classification of Handwritten Numbers

X = R16×16 (x are pixel vectors)
Y = { 0, . . . , 9 }

When training a classification agent, if we know the ‘true’ classes y(x) of
observations, we may use them to prescribe rewards by function
r : Y × Y → R, such as

rk+1 = r(yk+1, y(xk)) = −|yk+1 − y(xk)|

rk+1 = r(yk+1, y
∗(xk)) =

{
0 if yk+1 = y(xk)

−1 otherwise
(Unit reward) (1)

The negative reward function −r(., .) is called a loss function.

Introduction 2 / 24

Concept Classification

We will now focus on the simplest interesting form of classification: only
two classes and no “noise”.

Formally, any subset C ⊆ X is called a concept on X and we define
concept classification as a special case of classification where
Y = { 0, 1 } there is a target concept C on X instantiating the rewards
(??) as (k ∈ N)

r1 = 0

rk+1 =

{
yk+1 − 1 if xk ∈ C

−yk+1 otherwise
(2)

Concept Learning 3 / 24

Concept Classification (cont’d)

In other words, the agent decides by yk+1 = 1 (yk+1 = 0) that xk ∈ C
(xk /∈ C , respectively) and gets reward rk+1 = 0 (rk+1 = −1) if the
decision was right (wrong, respectively).

(Exercise problem)

Rewards rk+1 here depend deterministically on xk and yk+1, hence no
“noise”.

Note that arbitrary classification can be done by a finite number of concept

classification agents. Indeed, since Y is finite, each y ∈ Y can be represented by

a binary number with n ≈ lg |Y | digits. So we just let the target concept for the

i ’s agent contain all x ∈ X for which the i ’s digit of optimal action y is 1. This

agent will learn to predict the i ’s digit of the optimal action for x.

Concept Learning 4 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.exploration

Positive and Negative Examples

Observations x ∈ C (x /∈ C , respectively) received by the agent are called
positive (negative) examples of C .

X

Cpositive examples negative examples

Example: X ∼ descriptons of animals. C ∼ same for mammals. Positive
example: description of a cat, negative example: same for a chicken.

Concept Learning 5 / 24

Hypothesis

From the examples, the agent learns a hypothesis h, which is a finite-size
description of a binary policy. The hypothesis also induces a concept

C (h) = { x ∈ X | h(x) = 1 } (3)

Note that we overload the h symbol to denote both the description of the
hypothesis and the policy function it defines.

(3) depends on the way the function h(x) is determined from the
description h. We do not make this dependence explicit as we will only be
interested in hypotheses with an obvious functional interpretation.

Concept Learning 6 / 24

Hypothesis vs. Concept

The goal of learning is to find h such that C (h) = C .

X

Cpositive examples negative examples

C (h)

Example (logical): h = milk ∧ ¬feathers, h(x) = 1 iff x |= h.

Concept Learning 7 / 24

Error Types

Until C (h) = C , there are four kinds of observations

X

C
true positives

false negatives

false positives

true negatives

C (h)

False positives and false negatives form the error region.

Concept Learning 8 / 24

Concept Class

With an unlimited supply of non-repeated examples, can we always learn
the target concept, i.e. find a h such that

C (h) = C (4)

In general, no. There are 2|X | possible concepts on X . If X is infinite (e.g.
X = N), there is an uncountable (|R|) number of such concepts. A
hypothesis is a finite description so there is a countable number (|N|) of
hypotheses. Thus there are more concepts than hypotheses.

To allow any learnability results, we will always have to assume that C is
not arbitrary (C ∈ 2X) but belongs to a smaller concept class on X

C ⊂ 2X (5)

Concept Learning 9 / 24

Hypothesis Class

A hypothesis class H is a set of hypotheses. For example, a set of
propositional-logic conjunctions.

C(H) denotes the concept class on X induced by hypotheses in H, i.e.

C(H) = { C (h) | h ∈ H } (6)

So if H = propositional-logic conjunctions then C(H) means the set of all
concepts on X that can be described by such conjunctions.

Terminology: when there is no risk of confusion, we will call C(H) the
same as H, e.g. “conjunctions ” rather than “concept class on X induced
by conjuctions”. If C (h) is the target concept, we will call h the target
hypothesis.

Concept Learning 10 / 24

Mistake-Bound Learning Model

Given a concept class C we want to study whether a learning agent can
learn concepts from C. What does “can learn concepts from C” exactly
mean? One definition is provided by the mistake-bound learning model
also known as the online learning model.

Due to (2) , maximizing the utilities (??) or (??) means minimizing the
number of mistakes, i.e., actions followed immediately by reward r = −1.
But what utility value is considered a success?

In the mistake-bound model, we request that if the target concept C ∈ C,
the number of mistakes is finite even for an infinite time horizon m, and
this is true for any distribution of observations (??) .

Concept Learning 11 / 24

Mistake-Bound Learning Model (cont’d)

Given (2) , the total number of mistakes in one possible history xr≤k is∑∞
k=1 |rk |. Since the latter must be finite,

∑∞
k=1 rγ

k converges even with
γ = 1 (we will keep γ = 1 unless stated otherwise).

As this must be true for any distribution of observations (??) , the
expectation in the infinite utility (??) also converges and |Uy1,y2,...| is the
expected total number of mistakes.

Recall that the sequence of observations determined by distribution (??) is the

only source of randomness in the agent-environment interaction in

concept classification as (??) is set deterministically by (2) .

Concept Learning 12 / 24

Mistake-Bound Learning Model (cont’d)

Moreover, the model requests that the number of mistakes is not just
finite, but reasonably small. In particular, it should grow at most
polynomially with the size (descriptive complexity) of observations x ∈ X ,
denoted nX . When observations are feature tuples of dimension n, we will
always set nX = n.

The model also defines when concept learning is time-efficient.

Mistake-bound model (or Online learning model)

In the concept classification protocol, an agent learns C from X online if
for any target concept from C on X and an arbitrary distribution (??) , it
makes a sequence of decisions y1, y2, . . . such that

∑∞
k=1 |rk | ≤ poly(nX).

It learns C online from X efficiently, if in addition, the time taken to
compute an action from an observation is also at most polynomial in nX .

(Exercise problem)

Concept Learning 13 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.stop-making-mistakes

The Winnow Algorithm

Winnow assumes Boolean-tuple observations, i.e. X = { 0, 1 }n , n ∈ N and
tries to identify the target concept C ⊆ X by a hyperplane in X .

The agent’s hypothesis at time k is an n-tuple of integers
hk = (h1k , h

2
k , . . . , h

n
k) specifying the hyperplane, initially set to

h1 = (1, 1, . . . , 1) (7)

Its policy yk+1 = hk(xk) (k ∈ N) is given by

hk(xk) = 1 iff
n∑

i=1

hikx
i
k >

n

2
(8)

Concept Learning 14 / 24

https://en.wikipedia.org/wiki/Winnow_(algorithm)

The Winnow Algorithm (cont’d)

On each mistake, hk is updated to hk+1 with a simple learning rule:

On a false negative xk (yk+1 = 0, rk+1 = −1), promote each
component hik where x ik = 1 by doubling its value:

hik+1 = 2hik (9)

On a false positive (yk+1 = 1, rk+1 = −1), eliminate each component
hik where x ik = 1 by zeroing it:

hik+1 = 0 (10)

Concept Learning 15 / 24

Winnow Learning Monotone Disjunctions

Using hyperplane separation, Winnow can learn only classes of linearly
separable concepts. One example is the class C(H) of monotone
disjunctions made out of up to n propositional variables p1, p2, . . .pn, i.e.,

H = {pi1 ∨ pi2 ∨ . . . pis | 1 ≤ ij ≤ n }

So, for example, when n = 4 and the target hypothesis is p1 ∨ p3, the
agent’s hypothesis h = [2, 0, 1, 0] will not make any mistakes because the
target disjunction is true iff

2x1 + x3 > 2

We are putting component indexes to the superscript of x and hk , reserving the

subscript for a time index.

Concept Learning 16 / 24

Conjunctive Observations

For Winnow, we assumed X = { 0, 1 }n , n ∈ N, so an example x ∈ X
specifies each of the n Boolean values. We want to allow the case that x
does not specify some of them. This could be done by leting
X = { 0, 1, ? }n where ? stands for value uknown.

Another way is to let X be the set of contingent (not tautologically true
or false) conjunctions of propositional literals made of atoms selected from
p1, p2, . . . ,pn. For example, with n = 3 the observation

p1 ∧ ¬p3

represents the same information as

(1, ?, 0)

We define the complexity nX of such observations to be n.

(Exercise problem)

Concept Learning 17 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.incomplete

Conjunctive Hypotheses

Unless stated otherwise, the term conjunction (disjunction) will mean a
conjunction (disjunction) of propositional literals, excluding e.g. a
conjunction of disjunctions (or the reverse). Non-propositional cases will
be marked explicitly.

We will be interested in hypotheses which are conjunctions, providing the
following decision policy y = h(x) for conjunctive examples

h(x) = 1 iff x |= h (11)

where |= is tautological consequence. So e.g. the observation

x = milk ∧ ¬feathers ∧ ¬flies

is decided positively (h(x) = 1) by h = milk ∧ ¬feathers.

Concept Learning 18 / 24

Separation vs. Generalization

Winnow uses the popular learning technique of separation

h3 h4

An alternative is the “covering” approach seeking the smallest joint
generalization of positive examples

h3 h4

Concept Learning 19 / 24

Generality and Subsumption Order

Let π, π′ be two policies X → { 0, 1 }n. We say that y is at least as
general as y ′ if π(x) = 1 for any x ∈ X such that π′(x) = 1.

Let h, h′ be conjunctions that prescribe policies by (11) . If h′ |= h then h
is at least as general as h′. (exercise problem)

Let h, h′ be two conjunctions or two disjunctions. We say that h
subsumes h′ (written h ⊆ h′) if Lits(h) ⊆ Lits(h′) where Lits(c) denotes
the set of literals in c . We say that h strictly subsumes (written h ⊂ h′)
h′ if Lits(h) ⊂ Lits(h′).

Theorem 1

Let h, h′ be conjunctions. If h ⊆ h′ then h′ |= h. Let furthermore h′ not be
tautologically false. Then h ⊆ h′ if and only if h′ |= h.

(exercise problem)

Concept Learning 20 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.generality
https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.prop-subs-cons

Least General Generalization

Let h, h′ be two conjunctions (two disjunctions, respectively). We say that
g is a least general generalization of h and h′ if g ⊆ h, g ⊆ h′, and
there is no conjunction (disjunction) g ′ such that g ⊂ g ′, g ′ ⊆ h, g ′ ⊆ h′.

Let h, h′ be two conjunctions (two disjunctions, respectively) and let us
define:

lgg(h,h′) = Lits(h) ∩ Lits(h′) (12)

Easy to verify: lgg(h, h′) is a least general generalization of h and h′.

The proof is an exercise problem.

(a further exercise problem)

Concept Learning 21 / 24

https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.prop-LGG-is-lgg
https://cw.fel.cvut.cz/wiki/_media/courses/smu/tutorials2021/all_problems.pdf#problem.prop-lgg

LGG Properties and Set-LGG

The subsumption order ⊆ induces a lattice where lgg is the least upper
bound (lup). As any lup, lgg has these properties:

lgg(a, b) = a if a ⊆ b (13)

lgg(a, b) = lgg(b, a) (commutativity) (14)

lgg(a, lgg(b, c)) = lgg(lgg(a, b), c) (associativity) (15)

Properties 14 and 15 let us extend lgg naturally to sets of conjunctions or
disjunctions:

lgg({ x1, x2, . . . , xm }) = lgg(. . . lgg(lgg(x1, x2), . . .), xm) (16)

where the order of the xk on the RHS is irrelevant. For conjunctions,
obviously lgg({ x1, x2, . . . , xm }) =

⋂m
k=1 xk .

Concept Learning 22 / 24

Example: Subsumption Lattice on Conjunctions

Contingent conjunctions are enclosed by the dashed curve.

∅

p1 ¬p1 p2 ¬p2

p1¬p1 p1p2 p1¬p2 ¬p1p2 ¬p1¬p2 p2¬p2

p1¬p1p2 p1¬p1¬p2 p1p2¬p2 ¬p1p2¬p2

p1¬p1p2¬p2

Concept Learning 23 / 24

The Generalization Algorithm

The generalization algorithm assumes X to consist of contingent
conjunctions on variables p1, p2, . . . ,pn. It uses the policy (11) , which can
be written as

h(x) = 1 if h ⊆ x (17)

because x ∈ X are contingent. It has a simple learning rule:

Wait for the first positive example. That is, emit actions yk = 0 until
rk = −1, then xk−1 is a positive example. Set hk = xk−1.

Continue receiving percepts and on each mistake (rk+1 = −1), set

hk+1 = lgg(hk , xk) (18)

Concept Learning 24 / 24

	Introduction
	Concept Learning

