
SMU: Lecture 6
Monday, March 7, 2022


(Heavily inspired by the Stanford RL Course of Prof. Emma Brunskill, but all potential errors are mine.)
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Bandits  

(Recap from last week)



Multi-Armed Bandits

🎰 🎰 🎰 🎰

P[R = r |A = i]

1 2 3 4

We can choose actions  and each of them leads 
to a different distribution of rewards.

{1,2,3,4}



Setting
Multi-armed bandit is essentially a degenerate MDP that contains a single state.


Definition: A multi-armed bandit is given by:


A set  containing  actions  (each can be thought of as “pulling an arm”).


Reward distributions , that is the distribution of rewards at time  given 
the action at time .


At each step, the agent takes an action and receives a reward sampled from the above 
distribution.


The informal goal is to maximize the reward …. of course, this is a random variable.

A m a1, a2, …, am

P[Rt = r |At = a] t
t

T

∑
t=1

Rt



Regret (1/3)

Action-value: .


Similar to MDPs where we had . However, we do not need  
because we now have only one state. So we could rewrite it as . But 
then, since the action only affects the immediate reward and not to which 
state we get, the whole notion of policy is not very important for  in this 
setting, so we drop that as well and end up with .

Q(a) = 𝔼[Rt |At = a]

Qπ(s, a) s
Qπ(a)

Q
Q(a) = 𝔼[Rt |At = a]



Regret (2/3)
Optimal value:          .


Optimal action:         . 

Regret:                       . 

That is, regret is the “opportunity loss” at time t. Note that we use expected value 
in the definition of regret (recall how we defined ). That means we are not 
measuring regret directly in terms of what we observe. Since the parameters of 
bandits will generally be unknown, it also means we will not be able to compute 
regret directly.

V* = max
a∈A

Q(a) = max
a∈A

𝔼[Rt |At = a]

a* = arg max
a∈A

Q(a)

Lt = V* − Q(At)

Q(a)



Regret (3/3)

Total regret:               . 

Minimizing total regret is the same as maximizing the expected sum of 
rewards (i.e. return).

Ltot
T =

T

∑
t=1

Lt =
T

∑
t=1

(V* − Q(At))



What We Want… (1/2)
We want to find algorithms where the regret will grow slowly with the number 
of time steps taken.


Note that: 

When regret does not grow at all after some time, that means that we are 
already taking the optimal action. 

Regret is the difference between best possible return and the return under 
our strategy. So when the regret grows slowly, it means we are already 
doing quite well.



What We Want… (2/2)

If we knew the expectations  then the problem would be trivial, 
but it would not be reinforcement learning. 

We could try to first estimate  by taking actions completely 
randomly. However, then in this first part we would incur high regret and it is 
also not clear how long we should be estimating (because that actually 
depends on the values of )… So we will need something 
smarter.

𝔼[Rt |At = a]

𝔼[Rt |At = a]

𝔼[Rt |At = a]



UCB Algorithm: Basic Idea
Upper-Confidence Bound (UCB) Algorithm 

For every action , maintain an upper bound  (the upper bound 
will change with time, that is why it is indexed by ). 

In every time step , take the action that has the maximum upper bound, i.e. 
take the action .


After observing the reward, update the estimates.

a ∈ A Ut(a)
t

t
arg max

a∈A
Ut(a)



UCB Algorithm
Initialization: 

Take every action  once and record the rewards in .




Loop: 
Compute upper confidence bounds for all actions :


 

Use the action  and observe the reward .


Update 


Update .


 

a ∈ A Q̂(a)
t := 1

ai ∈ A

Ut(ai) = Q̂(ai) +
1

2N(ai)
log

2t2

δ

at = arg max
a∈A

Ut(a) rt

N(at) := N(a1) + 1

Q̂(at) := Q̂(at) +
1

N(at)
(rt − Q(at))

t := t + 1



A Primer (Or a Refresher) on 
Bayesian Learning



The Basic Idea (1)
We suppose that the data (learning example) are generated by a distribution 
that looks as follows:


p(X |α) = ∫ p(X |θ)p(θ |α)dθ

where


•  is the sample, i.e.,  where  is the i-th example,

•  is the marginal probability (or probability density) of the sample 

, given the hyperparameters 

•  is the prior probability of the parameters  given the 

hyperparameters .

X X = [x1; x2; …; xn] xi
p(X |α)
X α
p(θ |α) θ

α



The Basic Idea (2)
We suppose that the data (learning example) are generated by a distribution 
that looks as follows:


p(X |α) = ∫ p(X |θ)p(θ |α)dθ

We usually want to learn about the hidden parameters .

Therefore we need to compute  for which we have:


.

θ
p(θ |X, α)

p(θ |X, α) =
p(X |θ, α)p(θ |α)

p(X |α)
∝ p(X |θ, α)p(θ |α)



Example (Slide 1): Bernoulli Distribution

Bernoulli random variable X: 

, .


It is the distribution of a biased coin (one that lands “heads” with probability 
 and “tails” with probability .

P[X = 1] = θ P[X = 0] = 1 − θ

θ 1 − θ



Example (Slide 2): A Prior

Prior:  is sampled from the beta distribution with parameters  and .


But what is the beta-distribution?

θ α β



Example (Slide 3): Beta Distribution

Beta distribution: 

 

for .


Here,  is the beta function defined as  and  

is the gamma function, which satisfies .

pbeta(x; α, β) =
1

B(α, β)
xα−1(1 − x)β−1

x ∈ (0; 1)

B(α, β) B(α, β) =
Γ(α)Γ(β)
Γ(α + β)

Γ(α)

Γ(n) = (n − 1)!



Example (Slide 4): Beta Function

We will also need another the following alternative definiton of the beta 
function:


B(α, β) = ∫
1

0
xα−1(1 − x)β−1dx



Example (Slide 5): Beta Distribution



Example (Slide 6): Beta Distribution



Example (Slide 7): Computing the Posterior

Let  be our sample. Since ’s are Bernoulli random 
variebls, . We will denote by  the number of 1’s in  and by 

 the number of 0’s.


First, we compute the data likelihood given : 

 .


X = [x1, x2…, xn] xi
xi ∈ {0,1} Pos X

Neg

θ

p(X |θ, α, β) = P(X |θ) =
n

∏
i=1

θxi(1 − θ)1−xi = θPos ⋅ (1 − θ)Neg



Example (Slide 8): Computing the Posterior

Let  be our sample. Since ’s are Bernoulli random variebls, . 
We will denote by  the number of 1’s in  and by  the number of 0’s.


Next, we compute the marginal distribution of the data given the hyperparameters: 

 

 

 

X = [x1, x2…, xn] xi xi ∈ {0,1}
Pos X Neg

p(X |α, β) = ∫
1

0

n

∏
i=1

θxi(1 − θ)1−xipbeta(θ |α, β)dθ = ∫
1

0

n

∏
i=1

θxi(1 − θ)1−xi
1

B(α, β)
θα−1(1 − θ)β−1dθ =

= ∫
1

0
θPos(1 − θ)Neg 1

B(α, β)
θα−1(1 − θ)β−1dθ =

1
B(α, β) ∫

1

0
θα+Pos−1(1 − θ)β+Neg−1dθ =

=
1

B(α, β)
B(α + Pos, β + Neg)



Example (Slide 9): Computing the Posterior
Finally, we compute the posterior distribution of the parameter (where we plug in what we derived 
on the preceding slides)… 







 

p(θ |X, α, β) =
p(X |θ, α, β)p(θ |α, β)

p(X |α, β)
=

=
θPos ⋅ (1 − θ)Neg 1

B(α, β) θα−1(1 − θ)β−1

1
B(α, β) B(α + Pos, β + Neg)

=

=
θα+Pos−1(1 − θ)β+Neg−1

B(α + Pos, β + Neg)
= pbeta(θ |α + Pos, β + Neg)



Example (Slide 10): Computing the Posterior
Finally, we compute the posterior distribution of the parameter (where we plug in what we derived 
on the preceding slides)… 







 

p(θ |X, α, β) =
p(X |θ, α, β)p(θ |α, β)

p(X |α, β)
=

=
θPos ⋅ (1 − θ)Neg 1

B(α, β) θα−1(1 − θ)β−1

1
B(α, β) B(α + Pos, β + Neg)

=

=
θα+Pos−1(1 − θ)β+Neg−1

B(α + Pos, β + Neg)
= pbeta(θ |α + Pos, β + Neg)

p(θ |X, α, β) = pbeta(θ |α + Pos, β + Neg)
We are going to need this:



Note: Bayesian Updating (1)
• Suppose we start with , .


• The posterior distribution is 

α = 1 β = 1

p(θ) = pbeta(θ |α = 1, β = 1)



Note: Bayesian Updating (2)
• Suppose we obtain the first sample .


• The posterior distribution is then 

x1 = 1

p(θ) = pbeta(θ |α = 2, β = 1)



Note: Bayesian Updating (3)
• Suppose we obtain the second sample .


• The posterior distribution is then 

x2 = 1

p(θ) = pbeta(θ |α = 3, β = 1)



Note: Bayesian Updating (4)
• Suppose we obtain the third sample .


• The posterior distribution is then 

x3 = 0

p(θ) = pbeta(θ |α = 3, β = 2)



Note: Bayesian Updating (5)
• Suppose that after 40 coin tosses, we obtained 26 1’s and 14 0’s..


• Then the posterior distribution is then p(θ) = pbeta(θ |α = 27, β = 15)



Note 2: “Conjugate Prior”

• What we just observed was an example of “conjugacy”.


• A conjugate prior is a prior probability distribution that, when combined 
with observed data, given a parametric likelihood function, yields a 
posterior distribution from the same family as the prior distribution.


• Conjugate priors allow for symbolic solutions.



Bandits: Thompson Sampling



Bayesian Bandits

• Formulated in the Bayesian setting.


• They can exploit prior knowledge (if we have it).


• We obtain the posterior distribution of the rewards for each of the arms as
 where  is the history of the rewards and  are 

hyperparameters of the prior.


• Idea: We will use the computed posteriors to decide which arm to pull 
next.

p(r |h1:t, α) h1:t α



Bernoulli Bandits

• Each arm corresponds to a Bernoulli distribution with an unknown 
parameter .


• Example: So the rewards are either 0 or 1. For instance, in the example 
with choosing which ad to show to users, the reward could be 1 if the user 
clicked on the ad, and 0 otherwise.

θi



Idea: Probability Matching
• (An idea that appeared already in 1920’s but was mostly forgotten.)


• Probability matching selects the action about which we believe that it is the 
best action (i.e., here the “belief” is based on the posterior we compute from 
the observations so far).


• That is:


.


• We will see a simple stochastic approach called Thompson Sampling that 
implements probability matching (computing the above probabilities may be 
intractable).

π(a |h1:t) = P[∀a′ : Q(a) > Q(a′ ) |h1:t]



Thompson Sampling

Credit: Prof. Emma Bruskill’s Reinforcement learning course



Thompson Sampling “Is” Probability Matching 

π(a |h1:t) = P[Q(a) > Q(a′ ) |h1:t] = 𝔼 [𝕀(a = arg max
a∈𝒜

Q(a))]
The following holds for the policy obtained in Thompson sampling:

Here,  is the sampled action-value (i.e., the parameters of this 
distribution are sampled from the current posteriors that we have for each 

).

Q(a)

a ∈ A



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Guarantees
There are also guarantees on regret of Thompson sampling (k is a constant):



Example (1)

🎰 🎰 🎰
1 2 3



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (2)

🎰 🎰 🎰
1 2 3

Sample :θi

θ1 = 0.4 θ2 = 0.45 θ3 = 0.75



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (3)

🎰 🎰 🎰
1 2 3

Argmax: θ1 = 0.4 θ2 = 0.45 θ3 = 0.75



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (4)

🎰 🎰 🎰
1 2 3

PULL ARM 3



Example (5)

🎰 🎰 🎰
1 2 3

PULL ARM 3

Observed reward .r1 = 1



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (6)

🎰 🎰 🎰
1 2 3

PULL ARM 3

Observed reward .r1 = 1

Update .α3 = 1 + 1 = 2, β3 = 1



Example (7)

Update .α3 = 1 + 1 = 2, β3 = 1



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (8)

🎰 🎰 🎰
1 2 3

Sample :θi

θ1 = 0.3 θ2 = 0.8 θ3 = 0.69



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (9)

🎰 🎰 🎰
1 2 3

Sample :θi

θ1 = 0.3 θ2 = 0.8 θ3 = 0.69



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (10)

🎰 🎰 🎰
1 2 3

PULL ARM 2



Example (11)

🎰 🎰 🎰
1 2 3

PULL ARM 2

Observed reward .r1 = 0



Thompson Sampling for Bernoulli Bandits
1. for t = 1, 2, …, do: 
 # sample the Bernoulli model 
A. for k = 1, …, num_arms do: 

• Sample  
B. end for 

 # select and apply the action 

D.  
E. Apply the action  and observe the reward  

 # update the distributions 

F.  
2. end for 

̂θk = beta(αk, βk)

xt := argmaxk ̂θk

xt rt

(αk, βk) := (αk + rt, βk + 1 − rt)



Example (12)

🎰 🎰 🎰
1 2 3

PULL ARM 2

Observed reward .r1 = 0

Update .α2 = 1, β2 = 1 + 1 = 2



Example (12)

Update .α2 = 1, β2 = 1 + 1 = 2



And so on…



Conclusions - What We Did 
Not Cover in the RL Part



What We Did Not Cover
• A lot… 

• Some examples: 

• Contextual bandits - e.g., when Facebook serves you advertisement, 
they use personalization - context.


• Policy gradients - A  class of deep RL methods where policies are also 
parametrized by neural networks.


• Proofs … of almost anything.



Some Examples of RL Applications

Atari Games (Deep Q-Learning): https://www.youtube.com/watch?
v=V1eYniJ0Rnk 


Open AI Plays Hide-And-Seek: https://www.youtube.com/watch?
v=Lu56xVlZ40M


DeepMind’s AlphaStar - Starcraft: https://www.youtube.com/watch?
v=jtlrWblOyP4 


There are many other applications of reinforcement learning (e.g., 
reinforcement learning from human feedback for LLMs…)

https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=V1eYniJ0Rnk
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=Lu56xVlZ40M
https://www.youtube.com/watch?v=jtlrWblOyP4
https://www.youtube.com/watch?v=jtlrWblOyP4

