## Question 1.

Let $X$ contain all real numbers from $[0 ; 1]$ which can be represented using 256 bits. Let $\mathcal{H}=X$, and let the decision be given by $H \in \mathcal{H}$ as

$$
h(x)=1 \text { iff } x>H
$$

Determine an $m$ such that with probability at least $0.9, \operatorname{err}(h)<0.1$, where $h$ is an arbitrary hypothesis from $\mathcal{H}$ consistent with $m$ i.i.d. examples from $X$. Estimate it
(a) without using any textbook lower bounds
(b) using the lower bound $m>\frac{1}{\epsilon} \ln \frac{|\mathcal{H}|}{\delta}$
(c) using the lower bound $m>\frac{8}{\epsilon}\left(\mathrm{VC}(\mathcal{H}) \cdot \ln \frac{16}{\epsilon}+\ln \frac{2}{\delta}\right)$

## Answer:

We have

$$
\begin{aligned}
\epsilon & =0.1 \\
\delta & =1-0.9=0.1 \\
|\mathcal{H}| & =2^{256}
\end{aligned}
$$

(a) For a fixed $h$, the probability that it is "bad" $(\operatorname{err}(h)>\epsilon)$ and still consistent with $m$ i.i.d. observations is at most $(1-\epsilon)^{m}=0.9^{m}$.
For an arbitrary $h \in \mathcal{H}$, we can bound the probability of at least one of them being "bad" by

$$
\sum_{h \in \mathcal{H}}(1-\epsilon)^{m}=|\mathcal{H}|(1-\epsilon)^{m}=2^{256} 0.9^{m}
$$

We want this probability to be smaller than $\delta$ :

$$
\begin{aligned}
|\mathcal{H}|(1-\epsilon)^{m} & <\delta \\
m & \geq \log _{1-\epsilon} \frac{\delta}{|\mathcal{H}|}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
m>\log _{0.9} \frac{0.1}{2^{256}} \approx 1707 \text { examples }(\text { smallest such } m) \tag{1}
\end{equation*}
$$

(b)

$$
\begin{aligned}
& m>\frac{1}{\epsilon} \ln \frac{|\mathcal{H}|}{\delta} \\
& m>\frac{1}{0.1} \ln \frac{2^{256}}{0.1} \approx 1798 \text { examples (smallest such } m \text { ) }
\end{aligned}
$$

which is slightly greater than before because the upper bound $(1-\epsilon)^{m}<e^{-\epsilon m}(\epsilon>0)$ is used in the derivation of the formula.
(c) $\operatorname{VC}(\mathcal{H})=1$ because a single number from $X$ can evidently be shattered (classified positively or negatively by hypotheses from $\mathcal{H}$ ) but two different numbers from $X$ cannot be shattered: the smaller cannot be made positive while the larger is negative.

$$
m>\frac{8}{\epsilon}\left(\mathrm{VC}(\mathcal{H}) \cdot \ln \frac{16}{\epsilon}+\ln \frac{2}{\delta}\right) \approx 646 \text { examples }
$$

## Question 2.

Consider the following decision tree:

(a) Express the tree as a 3 -DNF.
(b) Express the tree as a 3 -CNF.
(c) How can we use (modify) the generalization algorithm to learn $k$-decision trees in the PAC learning model?

## Answer:

(a) A 3-DNF is a disjunction of minterms conjoining at most 3 literals.

We construct each minterm by following one path to a positive label. By disjoining all those paths, we get the final DNF tree representation.

$$
\left(\neg x_{1} \wedge \neg x_{3}\right) \vee\left(\neg x_{1} \wedge x_{3} \wedge \neg x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge \neg x_{4}\right)
$$

(b) A 3-CNF is a conjunction of maxterms (clauses) disjoining at most 3 literals.

We can use the fact that a negation of a DNF is a CNF. We can't negate the DNF constructed above directly, since then, we would consider paths going into the negative labels. However, we can construct a DNF going into the negative labels and negate that, giving us a CNF capturing the paths going into the positive labels.

$$
\neg\left(\left(\neg x_{1} \wedge x_{3} \wedge x_{2}\right) \vee\left(x_{1} \wedge \neg x_{2} \wedge x_{4}\right) \vee\left(x_{1} \wedge x_{2}\right)\right)
$$

We could also construct the CNF directly. Consider each path to a negative label and "do everything in your power to avoid going down that path". For example, considering the "path" $\left\langle\neg x_{1}, x_{3}, x_{2}\right\rangle$, construct the clause $\left(x_{1} \vee \neg x_{3} \vee \neg x_{2}\right)$. Regardless of the strategy used, the final 3-CNF reads as

$$
\left(x_{1} \vee \neg x_{3} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right)
$$

(c) We can use the fact following from the exercises above that $k$-DT $\subseteq k$-CNF ( $k$-DNF). Hence, we will use the generalization algorithm for learning $k-$ CNFs ( $k-$ DNFs). Each clause (minterm) will be encoded by a new propositional variable and then we will simply be learning a conjunction (disjuction). There will be $\sum_{i=1}^{k}\binom{n}{i} 2^{i} \leq \operatorname{poly}(n)$ propositions, hence we will also learn efficiently. We won't be learning properly, though.
Using the adapted algorithm, we will be learning $k$-DTs in the mistake bound learning model, which implies that we will also be learning them in the PAC model.

