Question 1.

Let X contain all real numbers from [0; 1] which can be represented using 256 bits. Let H = X, and let the decision be given
by H € H as
hz)=1iff x > H

Determine an m such that with probability at least 0.9, err(h) < 0.1, where h is an arbitrary hypothesis from A consistent
with m i.i.d. examples from X. Estimate it

(a) without using any textbook lower bounds

. H
(b) using the lower bound m > 1 In %

(c) using the lower bound m > & (VC(#) - In1& +1In 2)

Answer:

We have

e=0.1
6=1-09=0.1
‘7_” _ 2256

(a) For a fixed h, the probability that it is “bad” (err(h) > €) and still consistent with m i.i.d. observations is at most

(1-e™ =09

For an arbitrary h € H, we can bound the probability of at least one of them being “bad” by

Z(l o 6)m — |H|(1 o 6)m — 22560.9m
heH

We want this probability to be smaller than d:

[H|(1—¢)™ < ¢
> 1 —5
m > log
= 081 |H]
ie.,
3 0'1 ~ P> 3 3 © ) a} e)
m > logg o 5256 ~ 1707 examples (smallest such m) (1)

m > ! In @
€ o
256
m> g In 01 ™ 1798 examples (smallest such m)

which is slightly greater than before because the upper bound (1 — €)™ < e~“"(e > 0) is used in the derivation of the
formula.

(¢) VC(H) = 1 because a single number from X can evidently be shattered (classified positively or negatively by hypotheses
from #) but two different numbers from X cannot be shattered: the smaller cannot be made positive while the larger
is negative.

8 16 2
m > — <VC(7—[) -In ~ +1In O> ~ 646 examples

€

Question 2.

Consider the following decision tree:



(a)
(b)
()

€

Express the tree as a 3-DNF.
Express the tree as a 3-CNF.

How can we use (modify) the generalization algorithm to learn k-decision trees in the PAC learning model?

Answer:

(a)

A 3-DNF is a disjunction of minterms conjoining at most 3 literals.

We construct each minterm by following one path to a positive label. By disjoining all those paths, we get the final
DNF tree representation.

(mxy A —xg) V (mxg Azg Axa) V(2 A —xg A —ay)

A 3-CNF is a conjunction of maxterms (clauses) disjoining at most 3 literals.

We can use the fact that a negation of a DNF is a CNF. We can’t negate the DNF constructed above directly, since
then, we would consider paths going into the negative labels. However, we can construct a DNF going into the negative
labels and negate that, giving us a CNF capturing the paths going into the positive labels.

- ((—\.131 N T3 A xz) V (371 A T2 A 334) \Y (.131 A 332))

We could also construct the CNF directly. Consider each path to a negative label and “do everything in your power to
avoid going down that path”. For example, considering the “path” (-1, 3, 22), construct the clause (1 V —x3 V —xs).

Regardless of the strategy used, the final 3-CNF reads as

(1‘1 \Y -3 \Y _\Ig) A ("Il \Y X9 \Y _\I4) A\ (_‘1171 \ _‘1‘2)

We can use the fact following from the exercises above that k-DT C k-CNF (k-DNF). Hence, we will use the generaliza-
tion algorithm for learning k—CNFs (k—DNF's). Each clause (minterm) will be encoded by a new propositional variable

and then we will simply be learning a conjunction (disjuction). There will be Ele (")2° < poly(n) propositions, hence
we will also learn efficiently. We won’t be learning properly, though.

Using the adapted algorithm, we will be learning k-DTs in the mistake bound learning model, which implies that we
will also be learning them in the PAC model.



