
Question 1.

Consider the instance space X = R2 and a concept c ⊆ X given as

-2 -1 1 2 3 4 5

-2

-1

1

2

3

4

c

(a) Name some concept classes C that contain c.

(b) Recall the SVM algorithm and decision trees. What hypothesis classes H do they work with and how do they internally
represent their hypotheses? Would they be appropriate to learn the concept c?

Answer:

(a) The broadest concept class could be the powerset of the instance space 2X . However, that is an extremely large class
without a very nice representation.

Instead, we can consider the concept class of all conic sections, which can be concisely represented by the inequality

Ax2 + Bxy + Cy2 + Dx + Ey + F ≤ 0.

We could do better still by only considering the concept class of all ellipses. Then, we would have certain limitations
imposed on the parameters of the inequality above.

(b) The SVM algorithm searches for a linear separator that maximizes the margin. Hence, its H are lines (half spaces)
which are represented by their slope and a bias (using some finite floating-point representation). The vanilla SVM
would not be suitable to learn c as it is not a linearly separable concept. However, we could use some appropriate
kernels.

Decision trees split the space into a set of axis-aligned rectangles. They are represented by a specialized binary tree
which has indicator functions of instances placed in each of its internal nodes. Decision trees might perform well on
learning c, although that is not easily judged and would also be dependant on the tree’s depth which is usually the
model’s hyperparameter.

Question 2.

Consider the generalization algorithm for learning conjunctions.

(a) What is the algorithm’s mistake bound? Describe a scenario when we achieve it.

(b) Assume we work on n = 4 logical variables. Assume the sequence of examples

1



x1 = (1, 0, 0, 1) with label y1 = 1

x2 = (1, 1, 0, 0) with label y2 = 0

x3 = (0, 1, 1, 1) with label y3 = 1

x4 = (1, 1, 1, 0) with label y4 = 0

Write the initial (internal) hypothesis as well as how it will gradually change when processing examples above.

Assuming that the concept class is in fact a set of all conjunctions, can we claim that the final hypothesis describes the
target concept?

(c) Adapt the algorithm to learn k-DNF. What is the mistake bound now? Are we still learning efficiently?

(d) How can we use the new algorithm to learn k-clause CNF? What is improper learning?

Answer:

(a) MB= n + 1.

We can achieve the bound when the concept is the empty set (i.e., the concept is a tautology) and we receive examples
such that x1 = 1 and xi = 1− ej for all i > 1 and some j ∈ [n].

(b) The hypothesis changes as follows:

h0 = p1 ∧ ¬p1 ∧ p2 ∧ ¬p2 ∧ p3 ∧ ¬p3 ∧ p4 ∧ ¬p4
h1 = p1 ∧ ¬p2 ∧ ¬p3 ∧ p4

h2 = p1 ∧ ¬p2 ∧ ¬p3 ∧ p4

h3 = p4

h4 = p4

We have made 2 mistakes so far. The mistake bound is n + 1 = 5. We can’t claim h4 to be the target concept.

Alternatively, the only other hypothesis we might produce is the empty conjunction, i.e., a tautology. Since, we have
seen examples x2 and x4 with a negative label, the target concept can’t be a tautology. Hence, h4 is the target concept.

(c) We introduce a new logical variable qi for each k-disjunction (a clause made up of at most k literals). The initial
hypothesis will be a conjunction over all qi, and it will be updated by the usual procedure.

Labels for each obtained example will be negated. Thus, we will be learning the complementary concept (a negation of
a conjunction is a disjunction).

Once the learning is finished, negate the final hypothesis (consequently, negate each qi meaning that each k-disjunction
is turned into a k-conjunction) to obtain the desired k-DNF.

There are

A =

k∑
j=0

(
n

j

)
2j

different k-disjunctions. The new mistake bound is A + 1 ≤ poly(n). Additionally, we can evaluate the truth value of
each k-disjunction in O(n), so we are still learning efficiently.

(d) It holds that k-clause CNF ⊆ k-DNF (try “multiplying out”). We can use the algorithm from above to learn k-clause
CNF efficiently.

However, the final hypothesis outputted will be a k-DNF, not the actual k-clause CNF, which is called improper learning
(C 6= H).

2


