
Branch-and-Bound Algorithm for the Combinatorial
Routing Problems

Jindřiška Deckerová
Tuesday - 16:15, parallel 103

Open Informatics
deckejin@fel.cvut.cz

ABSTRACT

My semestral project is focused on a generalization of the Traveling Salesman Problem called the Close-Enough TSP
and the computation of lower bounds of this combinatorial problem by Branch-and-Bound algorithm proposed by Coutinho et
al. in [1]. The project includes analysis of lower bounds obtained by the BnB algorithm and an extension to the Generalized
Traveling Salesman Problem with Neighborhoods.

I. ASSIGNMENT

A. Problem Statement

The most popular and widely studied combinatorial problem is the Traveling Salesman Problem (TSP). The formulation of
the TSP is following: Let us have a set of locations; the goal is to visit all of them in order to collect data from the locations,
i.e., having a complete, undirected graph G = (V,E), the goal is to determine the shortest Hamiltonian cycle.

In some cases, visiting the exact location is not necessary, thus the area around the location can be described as a region,
and it is sufficient to visit the region in order to collect the data from the location. The generalization of the TSP is motivated
by robotic manipulators and it is called the Traveling Salesman Problem with Neighborhoods (TSPN). A variant of the TSPN
with a disk-shaped neighborhood motivated by collecting data using wireless communication is called the Close-Enough TSP
(CETSP).

The goal of the CETSP is to determine the shortest path visiting all continuous disk-shaped neighborhoods with prespecified
sensing radius. The problem formulation of the CETSP in this project is based on the formulation from [2]. Having a set of
n locations to be visited, S = {s1, · · · , sn}, where si = (six, s

i
y) ∈ R2, and the cost of travel between two locations si and sj

is the Euclidean distance, ‖(si, sj)‖ =
√

(six − s
j
x)2 + (siy − s

j
y)2. The goal of the TSP is to determine the shortest path

visiting all locations, starting and ending at the same location s1 (referred as a depot). In the CETSP, a location is considered
visited if the path is in the distance less or equal to the sensing radius δ, a disk-shaped radius is formed around each location,
except the depot. Each location si can have arbitrary radius δi. Then the goal of the CETSP is to determine a sequence of
visits together with the most suitable point pi such that each si has its point pi and it holds ‖(si, pi)‖ = δi. The sequence of
visits of locations can be described as a permutation of locations Σ = (σ1, · · · , σn), where σi ∈ [1, n] and σi 6= σj , i 6= j.
The depot location visited first in the sequence Σ is denoted as sσ1 = s1, i.e., σ1 = 1. So the location is visited at the σi
time if a point pi is determined. The CETSP can be formulated as a combinatorial optimization task:

minΣ,P L(Σ, P, S) =

n−1∑
i=1

∥∥(pσi
, pσi+1

)
∥∥+ ‖(pσn

, pσ1
)‖

subject to Σ = (σ1, · · · , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j

S = {s1, · · · , sn}
P = {p1, · · · , pn}
sσ1 = s1 and ‖(si, pi)‖ ≤ δi for i ∈ [1, n]

The continuous neighborhood of locations in the TSPN can be discretized, and the problem becomes a variant of
the Generalized Traveling Salesman Problem (GTSP). Another generalization of the TSP referred to as Generalized Traveling
Salesman Problem with Neighborhoods (GTSPN) is introduced in [7]. This generalization is motivated by tasks for redundant
robotic manipulators or multi-goal aircraft missions. The main challenge of this problem is the extension of the TSPN with
3D regions and each neighborhood represented by a set of regions and forming a neighborhood set.

The formulation of the problem in this project is similar to the description proposed in [3] to remain readability and con-
sistency of the problem due to its complex formulation. The problem formulation is following: Having a set of neighborhoods
represented as neighborhood sets, i.e., each neighborhood consists of multiple individual regions, and the goal is to determine
the shortest path visiting all neighborhood sets. Let S be a set of n neighborhood sets S = {S1, · · · , Sn}, where each set
Si ∈ S consists of mi regions Si = {Qi,1, · · · , Qi,mi}, each region Qi,k ⊂ R3, i ∈ [1, n] and k ∈ [1,mi], is one of
three types: polyhedron, ellipsoid or combination of both. The goal is to determine a sequence of visits Σ = (σ1, · · · , σn),



where σi ∈ [1, n] and the point of the visit pi ∈ R3 that is inside the region Qi,k ∈ Si, i.e.,
⋃mi

k=1({pi} ∩ Qi,k) 6= ∅. Then
the GTSPN can be formulated as follows:

minΣ,P L(Σ, P, S) =

n−1∑
i=1

∥∥(pσi , pσi+1)
∥∥+ ‖(pσn , pσ1)‖

subject to Σ = (σ1, · · · , σn), 1 ≤ σi ≤ n, σi 6= σj for i 6= j

P = {p1, · · · , pn},
mi⋃
k=1

({pi} ∩Qi,k) 6= ∅

B. Problem Categorization

The TSP is known to be NP-hard problem. In [4] it is proven that the TSPN is APX-hard and cannot be approximated
within a factor of 391/390 in polynomial time, unless P=NP.

II. RELATED WORKS

This section presents brief outline of approaches for solving the CETSP and the GTSPN and an outline of existing
approaches for computing the lower bounds of the CETSP.

A. Approaches for solving the CETSP and the GTSPN

The CETSP has been first introduced by Gulczynski et al. [5] together with several heuristic approaches, all consisting of
three steps. In the first step, a set of feasible supernodes (points within the radius of location) is created. The next step is to
find a feasible tour visiting all supernodes. The third step is called an economization routine; the tour found in step two is
optimized to reduce the length of the tour while remaining feasibility. The heuristics differ in the first step; different methods
are used for determination of the supernodes set, e.g., hexagonal tiling, binary matrix representation, or Steiner zones.

Another approach for solving the CETSP is based on the unsupervised learning procedure of the Growing Self-Organizing
Array (GSOA) from [2]. The GSOA is motivated by the Self-Organizing Maps (SOMs) based solution of multi-goal path
planning problems. The key element of the heuristic is having a representation of locations as a set of nodes organized into
a one-dimensional structure called ring. The nodes are associated with the particular locations to be visited and a point called
waypoint that represents the representative point within the radius δ for the location. The learning procedure starting with
the depot location and iteratively determines for each location its node and its waypoint. The ring is then adapted towards
the waypoints. The algorithm ends when the solution is no longer improving. The GSOA has been deployed in a solution of
the CETSP in 3D [6].

The GTSPN was first introduced by Vicencio et al. in [7] and solved by a genetic algorithm called the Hybrid Random-
Key Genetic Algorithm (HRKGA) proposed in [7]. The neighborhood sets are encoded into chromosomes, and an initial
population of chromosomes is created. Then selection and crossover operations are repeatedly applied to the generation of
the chromosomes together with mutation of chromosomes. The Lin-Kernighan heuristic is used to improve the tour.

In [3], the GSOA with a fast post optimization has been deployed in the solution of the GTSPN. Besides the post optimized
GSOA, a new heuristic based on the decoupled approach using a solution of the GTSP is proposed, and it is further improved
by post-processing procedure.

B. Approaches for computing lower bounds for the CETSP

The lower and upper bounds on the solution of a problem give us information about instances and the optimal solution,
and we can measure the performance of algorithms by computing a gap between a solution of a tight lower bound.

A discretization scheme is proposed to compute lower bounds and the upper bounds of the CETSP in [8]. Each disk-shaped
neighborhood is discretized using a finite set of discretization points. The disk is divided into arcs, and each point on the arc is
associated with a point inside the region - the discretization point. The problem is then solved as the GTSP on the discretization
points. The set of points is reduced by selected only points with the maximum discretization error measured as a distance
between a discretization point and the point on the arc. When the graph is reduced, the GTSP is solved as a Mixed Integer
Problem (MIP). This gives an upper bound; the lower bound is computed from the upper bound by removing the discretization
error for each discretization point included in the tour.

For solving the lower bound of the CETSP, the Branch-and-Bound (BnB) algorithm is introduced in [1]. The BnB is
described in Section III.

III. PROBLEM SOLUTION

A. Design

The Branch-and-Bound (BnB) is an algorithm for solving combinatorial problems, such as scheduling or the TSP. In general,
the goal is to find a solution to the given problem in a set of possible solutions called a solution space, a solution in the solution
space is called the partial solution. The BnB consists of two phases: branching and bounding. During the branching, the solution
space is recursively split into smaller spaces, and the problem is solved in the smaller solution space. In the bounding,



the solution space is pruned by eliminating the partial solutions that will not contain the optimal solution, e.g., in the scheduling
the cost of the removed partial solution is already larger that deadlines of remaining tasks, or in the TSP, the length of
the removed partial solution is larger than the given upper bound on the total problem length.

The BnB for the CETSP has been introduced in [1], where the general algorithm is modified to fit the CETSP. The solution
space is represented as a tree, and each node of the tree is associated with the partial solution, i.e., a partial tour - a sequence of
locations in particular order, and a set of yet not covered locations. The BnB algorithm starts by creating a root node. The root
node consists of three locations, the depot location S1 and the last location Sn are always included in the root. The third
location is selected by solving the Second Order Cone Programming (SOCP) problem of the depot, the last location, and each
remaining location. The location associated with the maximum length of the problem is selected for the root node. The SOCP
solves GTSPN for the given sequence and associates waypoints with the locations in the sequence. If the partial solution
of the root node is feasible, i.e., the partial tour covers every neighborhood of every location, then the optimal solution is
found, and the algorithm is terminated. Otherwise, the branching phase starts. The solution space is split into smaller solution
spaces. A new solution space is created by adding a location from the set of uncovered locations to the partial solution. Then
the SOCP problem is solved for the new partial solution. In the bounding phase, the solution space is pruned by eliminating
the nodes having the total length of the partial tour is larger than the given upper bound.

B. Implementation

The SOCP problem for the CETSP is formulated according to [1] as follows:

minimize

n∑
i=0

di (1)

subject to wi = pσi−1
x − pσi

x ∀i ∈ [2, n] (2)
vi = pσi−1

y − pσi
y ∀i ∈ [2, n] (3)

ui = pσi−1
z − pσi

z ∀i ∈ [2, n] (4)
d2
i ≥ w2

i + v2
i + u2

i ∀i ∈ [1, n] (5)
xi = six − pix ∀i ∈ [1, n] (6)
yi = siy − piy ∀i ∈ [1, n] (7)

zi = siz − piz ∀i ∈ [1, n] (8)
x2
i + y2

i + z2
i ≤ δ2

i ∀i ∈ 1, n] (9)
di ≥ 0 ∀i ∈ [1, n] (10)

The goal is to select a waypoint pi for each location si that the waypoint is within the radius δi. Then the sequence of
waypoints is arranged so the overall distance is minimized.

For the extension to the GTSPN, the Eq. (1) - (5), (10) stay the same and the formulation of Eq. (6) - (9) has been
modified to fit the generalized problem with various-shaped neighborhoods.

Having three different region types: polyhedron, ellipsoid, and hybrid, the constraints to ensure the waypoint pi is within
the region Qi,k will vary according to the region type. The region types are well described in [3] as follows: A region Qi,k
of the ellipsoid type is defined by the region center ci,k and the symmetric positive definite matrix Pi,k ∈ R3,3 :

(pi − ci,k)TP−1
i,k (pi − ci,k) ≤ 1. (11)

The polyhedron is given by 12 half planes and the region Qi,k of the polyhedron type is given by the matrix Ai,k ∈ R12,3

and the vector bi,k ∈ R12,1:

Ai,k · pi − bi,k ≤ 0. (12)

The hybrid type of the region is a combination of an ellipsoid given by its center ci,k and the matrix Pi,k ∈ R3,3; and six
half planes given by the matrix Ai,k ∈ R6,3 and the vector bi,k ∈ R6,1. In [3] is assumed that all regions are convex and its
center ci,k is inside the region.

In order to visit the neighborhood set Si, one of the m neighborhoods Qi,k, k ∈ [1,m], has to be visited. In the SOCP
model, we use the Big-M method to select only one of the m neighborhoods for the representation of the neighborhood set
Si. For example, having two regions in the neighborhood set Si of the polyhedron type and the ellipsoid type, the constraints
are following:

(pi − ci,1)TP−1
i,1 (pi − ci,1) ≤ 1 +M · b1 (13)

Ai,2 · pi − bi,2 ≤M · b2 (14)
m=2∑
i=1

bi = m− 1 (15)

The implementation of the BnB based on [9] is simplified and extended for the GTSPN.



IV. EXPERIMENTS

A. Benchmark Settings

The proposed algorithm has been empirically evaluated on 3D instances of the GTSPN proposed in [7].

Fig. 1. Detail of a neighborhood set consisting of three
neighborhoods: polyhedron (green), ellipsoid (gray), and hybrid
(blue).

The instances has been modified to reduce the running time per each
instance. In [7], the authors proposed overall 30 3D instances, each in-
stance consists of n neighborhood sets, n ∈ {30, 35, 40, 45, 50},
and each neighborhood set is represented by six regions of various
types: polyhedra, ellipsoids and hybrids. The modified instances were
used for the evaluation. Each modified instance consists of six neigh-
borhood sets, and each neighborhood set is represented by three regions
of various types, see Fig. 1.

The BnB algorithm is implemented in C++ and results were obtained
using processor Inter Core i5-4460 running at 3.20 Hz and OS Ubuntu
18.04.2 LTS. The quality of the algorithm is measured by the Percentage
Deviation (PDB) from from the reference solution of the best solution
value among the performed trials as %PDB =

(L−Lref )
Lref

·100. Lref is the
best-known solution, L is the best solution obtained by the algorithm.

B. Results

The BnB has been compared with CENTROID+ method and GSOA
method, both introduced in [3]. The results indicate that the proposed
BnB method for lower bounds does not perform very well. Although it does not diverse from the solutions obtained by
GSOA and CENTROID+ very much. The reason for this unsatisfying behaviour may be the numerical unstability caused by

Set No. regions
GSOA CENTROID+ BnB

L TCPU
∗ L TCPU

∗ LB %PDB TCPU
∗

3D 6 3 f 18 1516.81 0.1 1 513.86 0.0 1544.67 2.04 0.0

3D 6 3 e 18 1743.76 0.0 1 737.60 0.0 1749.92 0.71 0.1

3D 6 3 c 18 1413.41 0.0 1431.06 0.0 - ∗ - ∗ 0.0

3D 6 3 a 18 1573.97 0.0 1 573.10 0.0 1578.20 0.32 0.0

3D 6 3 b 18 1452.56 0.0 1450.11 0.0 NF∗∗ NF∗∗ 0.0

3D 6 3 d 18 1 498.86 0.0 1500.37 0.0 1525.64 1.79 0.0

∗No value means that the BnB algorithm failed ∗∗ Not Feasible

inappropriately chosen value of ”big M”, that is calculated for each region as the maximum distance between the region and
its bounding box. It would explain the unfeasible solutions reported in Table 1.

V. CONCLUSION

In this semestral project I proposed an extension of the well known Branch-and-Bound algorithm for the Close Enough
Traveling Salesman Problem to fit the Generalized Traveling Salesmen Problem with Neighborhoods. The BnB has been
modified and a new formulation of the SOCP problem for GTSPN has been proposed. The algorithm gives not very good
results, although it could be promising with improved method for selecting the ”big M”.

REFERENCES

[1] W. P. Coutinho, R. Q. do Nascimento, A. A. Pessoa, A. Subramanian, “A branch-and-bound algorithm for the close-enough traveling salesman problem“,
INFORMS Journal on Computing, vol. 28, pp. 752–765, 2016.

[2] J. Faigl, “GSOA: Growing Self-Organizing Array - Unsupervised learning for the Close-Enough Traveling Salesman Problem and other routing
problems“,Neurocomputing, vol. 312, pp. 120-134, 2018.

[3] J. Faigl, P. Vana and J. Deckerova, “Fast Heuristics for the 3D Multi-Goal Path Plannning based on the Generalized Traveling Salesman Problem with
Neighborhoods”, IEEE Robotics and Automation Letters, pp. 1, 2019

[4] M. de Berga, J. Gudmundssonb, M. J. Katzc, C. Levcopoulosd, M. H. Overmarse, and A. F. van der Stappen, “TSP with neighborhoods of varying
size”, Journal of Algorithms, vol. 57, no. 1, pp. 22–36, 2005.

[5] D.J. Gulczynski, J.W. Heath, C.C. Price, “The Close Enough Traveling Salesman Problem: A Discussion of Several Heuristics”, Springer US, Boston,
MA, pp. 271– 283, 2006

[6] J. Faigl, J. Deckerová, “On Unsupervised Learning based Multi-Goal Path Planning for Visiting 3D Regions,“ Proceedings of the 2018 4th International
Conference on Robotics and Artificial Intelligence, ACM, pp. 45-50, 2018.

[7] K. Vicencio, B. Davis, and I. Gentilini, “Multi-goal path planning based on the generalized traveling salesman problem with neighborhoods” , IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2985–2990, 2014

[8] F. Carrabs, C. Cerrone, R. Cerulli, M. Gaudioso, “A novel discretization scheme for the close enough traveling salesman problem” , Computers &
Operations Research, vol. 78, pp. 163-171, 2017.

[9] W. P. Coutinho, R. Q. do Nascimento, A. A. Pessoa, A. Subramanian, “BnB CETSP” ,https://github.com/waltonpcoutinho/BnB CETSP/, 2018.


