Tutorial on LP-Based Heuristics

Daniel Fišer

Department of Computer Science, Faculty of Electrical Engineering, danfis@danfis.cz

April 8, 2020

LP-Based Heuristics

Before you proceed with this tutorial, listed to the corresponding lecture and read Section 5 of the tutorial notes on classical planning https://cw.fel.cvut.cz/wiki/_media/courses/be4m36pui/notes-cp.pdf

Example Planning Task

In this tutorial, we use the following example FDR planning task $P=\left\langle\mathcal{V}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, \mathrm{c}\right\rangle$:
$\mathcal{V}=\{A, B, C\}$,
$D_{A}=\{D, E\}, D_{B}=\{F, G\}, D_{C}=\{H, J, K\}$,
$s_{\text {init }}=\{A=D, B=F, C=H\}, s_{\text {goal }}=\{A=D, C=K\}$
$\mathcal{O}=\left\{o_{1}, o_{2}, o_{3}, o_{4}, o_{5}\right\}$,

	pre	eff	c
o_{1}	$\{A=D, C=H\}$	$\{A=E, C=J\}$	2
o_{2}	$\{A=D\}$	$\{B=G\}$	1
o_{3}	$\{B=G, C=J\}$	$\{C=K\}$	1
o_{4}	$\{A=E\}$	$\{A=D\}$	2
o_{5}	$\{C=H\}$	$\{C=J\}$	5

Flow Heuristic

First we construct the LP constraints for the flow heuristic.

- Each LP variable x_{o} correspond to the operator $o \in \mathcal{O}$.
- And each variable x_{o} counts how many times the operator o appear in the optimal plan.
- Recall from the tutorial notes, that for a given variable V and its value $v, \operatorname{prod}(\langle V, v\rangle)$ denotes a set of operators "producing" $\langle V, v\rangle$, i.e., a set of operators that set $\langle V, v\rangle$ when applied.
- Furthermore recall, that for a given variable V and its value $v, \operatorname{cons}(\langle V, v\rangle)$ denotes a set of operators "consuming" $\langle V, v\rangle$, i.e., a set of operators that un-set $\langle V, v\rangle$ when applied.

Flow Heuristic

So to get back to our example planning task.
We want to minimize $2 x_{o_{1}}+x_{o_{2}}+x_{o_{3}}+2 x_{o_{4}}+5 x_{o_{5}}$
subject to
$L B_{A, D} \leq x_{o_{4}}-x_{o_{1}}$
$L B_{A, E} \leq x_{o_{1}}-x_{o_{4}}$
$L B_{B, F} \leq 0$
$L B_{B, G} \leq x_{o_{2}}$
$L B_{C, H} \leq-x_{o_{1}}-x_{o_{5}}$
$L B_{C, J} \leq x_{o_{1}}+x_{o_{5}}-x_{o_{3}}$
$L B_{C, K} \leq x_{o_{3}}$
where $L B_{V, v}$ is a constant for each state for which we want to compute the heuristic estimate.

Flow Heuristic

Here is how we find out which constant to use if we compute the heuristic for the state s :

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,
\end{aligned}\right.
$$

Flow Heuristic

If $V=v$ is set in goal states and also in s, then $\langle V, v\rangle$ cannot be consumed more times than it is produced to reach a goal state.

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v
\end{aligned}\right.
$$

Flow Heuristic

If $V=v$ is set in goal states, but not in s, then $\langle V, v\rangle$ must be produced at least once to reach a goal state.

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,
\end{aligned}\right.
$$

Flow Heuristic

If $V=v$ is not necessarily set in goal states, but it is set in s, then we don't know how many times should be $\langle V, v\rangle$ consumed or produced. So, we set the lower bound to -1 .

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v
\end{aligned}\right.
$$

Flow Heuristic

If $V=v$ is not necessarily set in goal states, and it is not set in s, then we can tighten the lower bound a little bit. In contrast to the previous case, $\langle V, v\rangle$ cannot be consumed before it is produced. So if we produce $\langle V, v\rangle(+1)$, then we can also consume $\langle V, v\rangle(-1)$, which gives us the lower bound 0 .

$$
L B_{V, v}=\left\{\begin{aligned}
0 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V]=v, \\
1 & \text { if } V \in \operatorname{vars}\left(s_{\text {goal }}\right) \text { and } s_{\text {goal }}[V]=v \text { and } s[V] \neq v, \\
-1 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V]=v, \\
0 & \text { if }\left(V \notin \operatorname{vars}\left(s_{\text {goal }}\right) \text { or } s_{\text {goal }}[V] \neq v\right) \text { and } s[V] \neq v,
\end{aligned}\right.
$$

Flow Heuristic

So, suppose we want to compute the heuristic estimate for the initial state $s_{\text {init }}=\{A=D, B=F, C=H\}$ (and recall the goal $s_{\text {goal }}=\{A=D, C=K\}$).

Flow Heuristic

So, suppose we want to compute the heuristic estimate for the initial state
$s_{\text {init }}=\{A=D, B=F, C=H\}$ (and recall the goal $s_{\text {goal }}=\{A=D, C=K\}$). We get the following lower bounds:
$L B_{A, D}=0$
$L B_{A, E}=0$
$L B_{B, F}=-1$
$L B_{B, G}=0$
$L B_{C, H}=-1$
$L B_{C, J}=0$
$L B_{C, K}=1$

Flow Heuristic

So, suppose we want to compute the heuristic estimate for the initial state $s_{\text {init }}=\{A=D, B=F, C=H\}$ (and recall the goal $s_{\text {goal }}=\{A=D, C=K\}$). Which leads to the following linear program:
minimize $2 x_{o_{1}}+x_{o_{2}}+x_{o_{3}}+2 x_{o_{4}}+5 x_{o_{5}}$
subject to

$$
\begin{aligned}
L B_{A, D}=0 & \leq x_{o_{4}}-x_{o_{1}} \\
L B_{A, E}=0 & \leq x_{o_{1}}-x_{o_{4}} \\
L B_{B, F}=-1 & \leq 0 \\
L B_{B, G}=0 & \leq x_{o_{2}} \\
L B_{C, H}=-1 & \leq-x_{o_{1}}-x_{o_{5}} \\
L B_{C, J}=0 & \leq x_{o_{1}}+x_{o_{5}}-x_{o_{3}} \\
L B_{C, K}=1 & \leq x_{o_{3}}
\end{aligned}
$$

Potential Heuristics

Now we construct the linear program for the potential heuristic optimized for the initial state.

- In this case, each LP variable $P_{V, v}$ correspond to the fact $\langle V, v\rangle$, and each LP variable M_{V} correspond to the variable V.
- The value of $P_{V, v}$ is the potential corresponding to the fact $\langle V, v\rangle$.
- M_{V} is the upper bound on the potentials from the variable V.
- We use M_{V} in situations where we don't know which value is set (in the goal or in a precondition of operator) so we prepare for the worst case.
- For example, take our goal specification $s_{\text {goal }}=\{A=D, C=K\}$: We don't know how the variable B is set in goal states.
So to ensure goal-awareness of the heuristic we could construct (in this case) two constraints: $P_{A, D}+P_{B, F}+P_{C, K} \leq 0$ and $P_{A, D}+P_{B, G}+P_{C, K} \leq 0$, which will cover all cases.

Potential Heuristics

Now we construct the linear program for the potential heuristic optimized for the initial state.

- In this case, each LP variable $P_{V, v}$ correspond to the fact $\langle V, v\rangle$, and each LP variable M_{V} correspond to the variable V.
- The value of $P_{V, v}$ is the potential corresponding to the fact $\langle V, v\rangle$.
- M_{V} is the upper bound on the potentials from the variable V.
- We use M_{V} in situations where we don't know which value is set (in the goal or in a precondition of operator) so we prepare for the worst case.
- For example, take our goal specification $s_{\text {goal }}=\{A=D, C=K\}$: We don't know how the variable B is set in goal states.
Or we can construct the constraint $P_{A, D}+M_{B}+P_{C, K} \leq 0$ and make sure that M_{B} will be the maximum over $P_{B, F}$ and $P_{B, G}$ by adding auxiliary constraints $P_{B, F} \leq M_{B}$ and $P_{B, G} \leq M_{B}$.

Potential Heuristics

Now we construct the linear program for the potential heuristic optimized for the initial state.

- In this case, each LP variable $P_{V, v}$ correspond to the fact $\langle V, v\rangle$, and each LP variable M_{V} correspond to the variable V.
- The value of $P_{V, v}$ is the potential corresponding to the fact $\langle V, v\rangle$.
- M_{V} is the upper bound on the potentials from the variable V.
- We use M_{V} in situations where we don't know which value is set (in the goal or in a precondition of operator) so we prepare for the worst case.
- For example, take our goal specification $s_{\text {goal }}=\{A=D, C=K\}$: We don't know how the variable B is set in goal states.
Or we can construct the constraint $P_{A, D}+M_{B}+P_{C, K} \leq 0$ and make sure that M_{B} will be the maximum over $P_{B, F}$ and $P_{B, G}$ by adding auxiliary constraints $P_{B, F} \leq M_{B}$ and $P_{B, G} \leq M_{B}$. It should be clear that the first approach can (in the worst case) generate an exponential number of constraints, whereas the second approach will always generate only a linear number constraints.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
First, note that we constructed constraints only for M_{B}, but not for M_{A} or M_{C}. The reason is that M_{A} or M_{C} is not used anywhere so we can simplify the linear program a little bit.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
When we have computed the potentials $P_{V, v}$, we compute the heuristic estimate for a state s as $\sum_{V \in \mathcal{V}} P_{V, v}$.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will
maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
So, for example, for the initial state $s_{\text {init }}=\{A=D, B=F, C=H\}$, the heuristic value will be $P_{A, D}+P_{B, F}+P_{C, H}$.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
We make sure that the sum of potentials is always admissible by making the sums goal-aware and consistent.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
These constraints make sure that the sum will always be goal-aware.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
This constraint make sure that the heuristic is consistent with respect to the operator o_{1}. (Note that when o_{1} is applied on a state s, we can express the heuristic estimate for $o_{1}[s]$ as $\left.h\left(o_{1}[s]\right)=h(s)-P_{A, D}-P_{C, H}+P_{A, E}+P_{C, J .}\right)$

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
These constraints ensure consistency with respect to o_{2}.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
And so on, for o_{3}, o_{4}, and o_{5}.

Potential Heuristics

So, for our planning example, the linear program for the potential heuristic will maximize $P_{A, D}+P_{B, F}+P_{C, H}$
subject to
$P_{B, F} \leq M_{B}$
$P_{B, G} \leq M_{B}$
$P_{A, D}+M_{B}+P_{C, K} \leq 0$
$P_{A, D}+P_{C, H}-P_{A, E}-P_{C, J} \leq 2$
$M_{B}-P_{B, G} \leq 1$
$P_{C, J}-P_{C, K} \leq 1$
$P_{A, E}-P_{A, D} \leq 2$
$P_{C, H}-P_{C, J} \leq 5$
So the sum of potentials for every state will be an admissable estimate.

