Multi-Agent Planning

Michal Štolba stolba@agents.fel.cvut.cz

PUI (Planning in Artificial Intelligence)

Tutorial 8

1/27

Taxonomy

Coordination Schemes

	Planning For		
Planning By	Single Agent	Multiple Agents	
Multiple Agents	Distributed Planning	Multi-Agent Planning	

Agents and Environment

Observ-	Actions	No Agents	Cooperative	Adversarial
ability			Agents	Agents
Partial	Nondet.	POMDP	Dec-POMDP	POSG
	Det.	Conformant Planning		
Privacy	Nondet.	-	?	?
	Det.	-	MA-STRIPS	?
Full	Nondet.	MDP, Contingent Planning,	MMDP,	Charlestia someo
		Fault-tolerant Planning	Factored MDP	Stochastic games
	Det.	Classical/STRIPS	Factored Planning	Perfect Information Games

イロト イヨト イヨト イヨト

Idea MA-STRIPS

• Agents
$$\mathscr{A}$$
, $|\mathscr{A}| = n$

Planning problem for each agent

•
$$\{\Pi_i\}_{i=1}^n$$

$$\Pi_i = \langle P_i, A_i, I_i, G_i \rangle$$

イロト イヨト イヨト イヨト

э

4/27

Tutorial 8

Idea MA-STRIPS

$$\begin{split} & \sqcap_i = \langle P_i, A_i, I_i, G_i \rangle \\ & \triangleright P_i = P_i^{\mathsf{priv}} \cup P^{\mathsf{pub}} \\ & \triangleright A_i = A_i^{\mathsf{priv}} \cup A_i^{\mathsf{pub}} + \mathsf{projections} \\ & \triangleright I_i = I \cap P_i \\ & \triangleright G_i \subseteq P^{\mathsf{pub}} \end{split}$$

イロト イロト イヨト イヨト

2

5/27

Tutorial 8

Idea MA-STRIPS

- $\blacktriangleright \ \Pi_i = \langle P_i, A_i, I_i, G_i \rangle$
- Action $a \in A_i$ is public if either
 - pre(a) $\cap P^{\text{pub}} \neq \emptyset$,
 - $add(a) \cap P^{pub} \neq \emptyset$, or
 - del(a) $\cap P^{\mathsf{pub}} \neq \emptyset$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Tutorial 8

6/27

Projection MA-STRIPS

- Public projection of action
 - $a \in A_i^{\text{pub}}$: $a = \langle \text{pre}(a), \text{add}(a), \text{del}(a) \rangle$
 - $a^{\triangleright} = \langle \operatorname{pre}(a), \operatorname{add}(a), \operatorname{del}(a) \rangle$
 - $\operatorname{pre}(a^{\triangleright}) = \operatorname{pre}(a) \cap P^{\operatorname{pub}}$
 - $add(a^{\triangleright}) = add(a) \cap P^{pub}$
 - $del(a^{\triangleright}) = del(a) \cap P^{pub}$
- *i*-projection of state
 - $s \subseteq \bigcap_{i=1}^{n} P_i \dots s^{\triangleright i} = s \cap P_i$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Tutorial 8

7/27

MA-MPT

- Similar to MA-STRIPS
- Private or public variables

Multi-Agent Forward Search Principle

MAD-A* instance of MAFS

Each agent searches its own search space (no projections)

Asynchronous!

Send states achieved by public actions

- Encrypt private information
- Add received states to the open list

MAES

Multi-Agent Forward Search Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
 - Asynchronous!
- Send states achieved by public actions
- Add received states to the open list

MAES

Multi-Agent Forward Search Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
 - Asynchronous!
- Send states achieved by public actions
 - Encrypt private information
- Add received states to the open list

A D N A B N A B N

MAES

Multi-Agent Forward Search Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
 - Asynchronous!
- Send states achieved by public actions
 - Encrypt private information
- Add received states to the open list

4 A N

Heuristics

- Projected
 - Compute on Π_i (including projected actions)
 - Send with states
 - Take maximum $h_i(s)$ and $h_i(s)$ when s received by i from j
 - + Fast, computed individually
 - Less informed

Heuristics

- Projected
 - Compute on Π_i (including projected actions)
 - Send with states
 - Take maximum $h_i(s)$ and $h_i(s)$ when s received by i from j
 - + Fast, computed individually
 - Less informed

Heuristics

- Distributed
 - Compute by all agents for each state
 - Relaxations/FF, LM-Cut, Potential heuristics
 - More informed
 - Slow, all agents must participate

< ロ > < 同 > < 回 > < 回 >

Heuristics

- Distributed
 - Compute by all agents for each state
 - Relaxations/FF, LM-Cut, Potential heuristics
 - + More informed
 - Slow, all agents must participate

< (□) < 三 > (□)

Heuristics

Lazy-FF

- i computes RP
- Requests other agents for RP to solve private preconditions

MA-Pot

- Distributed LP computation
- Potentials for P^{pub} and P^{priv} for each agent
- Sent with the state and summed-up independently

< ロ > < 同 > < 回 > < 回 >

Heuristics

- Lazy-FF
 - i computes RP
 - Requests other agents for RP to solve private preconditions
- MA-Pot
 - Distributed LP computation
 - Potentials for P^{pub} and P^{priv}_{i} for each agent
 - Sent with the state and summed-up independently

1. Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$

2. Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$

 $\blacktriangleright \ \pi^{\rhd} \ ... \ {\rm public}$ actions replaced with projections, private actions removed

3. Find intersection: $\bigcup_{i=1}^{n} S_{i}^{\triangleright}$

- if $\pi_{l_{-}}^{\rhd} \in \bigcap_{i=1}^{n} S_{i}^{\rhd} \dots \{\pi_{l}^{1}, ..., \pi_{l}^{n}\}$ is a plan
- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright} = \emptyset$.. no solution, add more plans

(Note: Systematic generation necessary to avoid complete plan-space exploration)

・ロト ・ 四ト ・ ヨト ・ ヨト

- 1. Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$
- **2**. Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$
 - ▶ π^{\triangleright} ... public actions replaced with projections, private actions removed
- **3.** Find intersection: $\bigcup_{i=1}^{n} S_{i}^{\triangleright}$
 - if $\pi_l^{\triangleright} \in \bigcap_{i=1}^n S_i^{\triangleright} \dots \{\pi_l^1, \dots, \pi_l^n\}$ is a plan
 - if $\bigcap_{i=1}^{n} S_{i}^{\triangleright} = \emptyset$.. no solution, add more plans

(Note: Systematic generation necessary to avoid complete plan-space exploration)

・ロト ・四ト ・ヨト ・ヨト

- 1. Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$
- 2. Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$
 - ▶ π^{\triangleright} ... public actions replaced with projections, private actions removed
- **3.** Find intersection: $\bigcup_{i=1}^{n} S_{i}^{\triangleright}$
 - if $\pi_{l_{-}}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \dots \{\pi_{l}^{1}, ..., \pi_{l}^{n}\}$ is a plan
 - if $\bigcap_{i=1}^n S_i^{\triangleright} = \emptyset$.. no solution, add more plans

(Note: Systematic generation necessary to avoid complete plan-space exploration)

Idea

?

What about infinite number of plans (loops!)?

Planning State Machine (PSM)

- Concise representation of (infinite) number of plans
- Based on Finite Automata
- Projection

< ロ > < 同 > < 回 > < 回 >

What is MAP good for?

Factorization

- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
 - Search notoriously hard to parallelize
 - MAP-A* better than generic techniques

Privacy

- The reason MAP cannot be solved centrally
- What is that?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

What is MAP good for?

Factorization

- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
 - Search notoriously hard to parallelize
 - MAP-A* better than generic techniques

Privacy

- The reason MAP cannot be solved centrally
- What is that?

What is MAP good for?

Factorization

- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
 - Search notoriously hard to parallelize
 - MAP-A* better than generic techniques
- Privacy
 - The reason MAP cannot be solved centrally
 - What is that?

Privacv

Privacy **Motivation**

- Business cooperation/consortium
 - Need to cooperate but do not want to disclose data and processes
- Sensitive data
 - Medical computations
 - Private data on the cloud
- Military coalition operations
 - Need to cooperate but some data secret

Privacy In Computer Science

Secure Multiparty Computation

- Secure multiparty computation (MPC) (Yao 1982)
- Subfield of cryptography
- Compute a function f by a set of n parties p₁,..., p_n such that each p_i knows part of the input of f.
- Compute f in a way that no party p_i learns more information about the inputs of other parties than what can be learned from the output of f.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Secure Multiparty Computation

Assumptions

Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.

Malicious Can do whatever it wants to deceive and get information.

Computation

Information-theoretic privacy no assumptions on computation power of agents.

Computational privacy polynomial bound \rightarrow factoring is hard, etc.

Communication

- Synchronous/Asynchronous
- Retains order of messages (or not)
- ...

(日)

Secure Multiparty Computation

Assumptions

Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.

Malicious Can do whatever it wants to deceive and get information.

Computation

Information-theoretic privacy no assumptions on computation power of agents.

Computational privacy polynomial bound \rightarrow factoring is hard, etc.

Communication

- Synchronous/Asynchronous
- Retains order of messages (or not)

< 日 > < 同 > < 回 > < 回 > < 回 > <

Privacy

Secure Multiparty Computation

Assumptions

Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.

Malicious Can do whatever it wants to deceive and get information.

Computation

Information-theoretic privacy no assumptions on computation power of agents.

Computational privacy polynomial bound \rightarrow factoring is hard, etc.

Communication

- Synchronous/Asynchronous
- Retains order of messages (or not)
- ► ...

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Privacy In Multi-Agent Planning

- What is the private information?
 - Existence and value(s) of private fact (or variable)
 - Existence of private actions
 - ▶ For a public action $a \in A_i^{pub}$, existence and value(s) of
 - private pre(a) $\cap P_i^{\text{priv}}$
 - private add(a) $\cap P_i^{\text{priv}}$
 - private del(a) $\cap P_i^{\text{priv}}$

Privacy

Privacy-preserving Planner

Simply not sending private information is not enough!

- Private information may leak (be deduced)
 - Action is not applicable but the projection is ...
 - Heuristic values ...

< ロ > < 同 > < 回 > < 回 >

Privacy

Privacy-preserving Planner

Simply not sending private information is not enough!

- Private information may leak (be deduced)
 - Action is not applicable but the projection is ...
 - Heuristic values ...

Recall PSM - where might private information leak?

- 1. Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$
- **2**. Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$
 - ▶ π^{\triangleright} ... public actions replaced with projections, private actions removed
- **3.** Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$
 - if $\pi_{l_{-}}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \dots \{\pi_{l}^{1}, ..., \pi_{l}^{n}\}$ is a plan
 - if $\bigcap_{i=1}^n S_i^{\triangleright} = \emptyset$.. no solution, add more plans

Recall PSM - where might private information leak?

- **1.** Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$
- **2**. Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$
 - ▶ π^{\triangleright} ... public actions replaced with projections, private actions removed
- **3.** Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$
 - if $\pi_{l_{-}}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \dots \{\pi_{l}^{1}, ..., \pi_{l}^{n}\}$ is a plan
 - if $\bigcap_{i=1}^{n} S_{i}^{\triangleright} = \emptyset$.. no solution, add more plans

Recall PSM - where might private information leak?

- **1.** Each agent generates a set of plans $S_i = \{\pi_1^i, ..., \pi_k^i\}$
- **2.** Public projection: $S_i^{\triangleright} = \{\pi_1^{i \triangleright}, ..., \pi_k^{i \triangleright}\}$
 - π^{\triangleright} ... public actions replaced with projections, private actions removed
- **3.** Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$
 - if $\pi_{l_{-}}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \dots \{\pi_{l}^{1}, ..., \pi_{l}^{n}\}$ is a plan
 - if $\bigcap_{i=1}^{n} S_{i}^{\triangleright} = \emptyset$.. no solution, add more plans

Privacy

Privacy-preserving Planner PSM - solution

- Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$ securely!
 - Information-theoretic secure set intersection (Li&Wu 2007)
 - Computationally secure DFA intersection (Guanciale et al. 2014)
- (+ Securely select a solution at random)

Privacy

Privacy-preserving Planner PSM - solution?

But! What if no solution found?

Recall: "If no solution, add more plans"

Information leaks!

- Assuming some systematic generation of plans (e.g. from shortest to longest)
- ▶ In iteration k all plans of length < k already generated by all agents
- If not accepted some private preconditions must exist

< ロ > < 同 > < 回 > < 回 > < 回 >

Privacy-preserving Planner PSM - solution?

- But! What if no solution found?
- Recall: "If no solution, add more plans"
- Information leaks!
 - Assuming some systematic generation of plans (e.g. from shortest to longest)
 - ▶ In iteration k all plans of length < k already generated by all agents
 - If not accepted some private preconditions must exist

< ロ > < 同 > < 回 > < 回 >

Privacy-preserving Planner PSM - solution?

- But! What if no solution found?
- Recall: "If no solution, add more plans"
- Information leaks!
 - Assuming some systematic generation of plans (e.g. from shortest to longest)
 - ▶ In iteration *k* all plans of length < *k* already generated by all agents
 - If not accepted some private preconditions must exist

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- ▶ Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tutorial 8

27/27

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete!

Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tutorial 8

27/27

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete!

Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- ▶ Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

< 日 > < 同 > < 回 > < 回 > < 回 > <

3

27/27

Tutorial 8

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete!

Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

< 日 > < 同 > < 回 > < 回 > < 回 > <

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!

Do just one iteration (with random plans) - not complete!

Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
 - Research question!
- Does it always hold?
 - Research question!
- How to quantify leaked information (in general)
 - Research question!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >