Multi-Agent Planning

Michal Štolba
stolba@agents.fel.cvut.cz

$\triangle \mathrm{DiCEParmen}$ of computer science, ruv

PUI (Planning in Artificial Intelligence)

Coordination Schemes

	Planning For	
Planning By	Single Agent	Multiple Agents
Multiple Agents	Distributed Planning	Multi-Agent Planning
Single Agent	Classical Planning	Classical Planning

Agents and Environment

Observ- ability	Actions	No Agents	Cooperative Agents	Adversarial Agents
Partial	Nondet.	POMDP	Dec-POMDP	POSG
	Det.	Conformant Planning		$?$
Privacy	Nondet.	-	$?$	$?$
	Det.	-	MA-STRIPS	?
Full	Nondet.	MDP, Contingent Planning, Fault-tolerant Planning	MMDP, Factored MDP	Stostic games
	Det.	Classical/STRIPS	Factored Planning	Perfect Information Games

Idea

- Agents $\mathscr{A},|\mathscr{A}|=n$
- Planning problem for each agent
- $\left\{\Pi_{i}\right\}_{i=1}^{n}$
- $\Pi_{i}=\left\langle P_{i}, A_{i}, l_{i}, G_{i}\right\rangle$

Idea

- $\Pi_{i}=\left\langle P_{i}, A_{i}, l_{i}, G_{i}\right\rangle$
- $P_{i}=P_{i}^{\text {priv }} \cup P^{\text {pub }}$
- $A_{i}=A_{i}^{\text {priv }} \cup A_{i}^{\text {pub }}+$ projections
- $I_{i}=I \cap P_{i}$
- $G_{i} \subseteq P^{\mathrm{pub}}$

Idea

- $\Pi_{i}=\left\langle P_{i}, A_{i}, l_{i}, G_{i}\right\rangle$
- Action $a \in A_{j}$ is public if either
- pre $(a) \cap P^{\text {pub }} \neq \emptyset$,
- $\operatorname{add}(a) \cap P^{\text {pub }} \neq \emptyset$, or
- $\operatorname{del}(a) \cap P^{\text {pub }} \neq \emptyset$

Projection

 MA-STRIPS- Public projection of action
- $a \in A_{i}^{\text {pub }}: a=\langle\operatorname{pre}(a), \operatorname{add}(a), \operatorname{del}(a)\rangle$
- $a^{\triangleright}=\langle\operatorname{pre}(a), \operatorname{add}(a), \operatorname{del}(a)\rangle$
- $\operatorname{pre}\left(a^{\triangleright}\right)=\operatorname{pre}(a) \cap P^{\text {pub }}$
- $\operatorname{add}\left(a^{\triangleright}\right)=\operatorname{add}(a) \cap P^{\text {pub }}$
- $\operatorname{del}\left(a^{\triangleright}\right)=\operatorname{del}(a) \cap P^{\text {pub }}$
- i-projection of state
- $s \subseteq \bigcap_{i=1}^{n} P_{i} \ldots s^{\triangleright i}=s \cap P_{i}$

MA-MPT

- Similar to MA-STRIPS
- Private or public variables

Multi-Agent Forward Search

 Principle- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections) - Asynchronous!
- Send states achieved by public actions
- Encrypt private information
- Add received states to the open list

Multi-Agent Forward Search

Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
- Asynchronous!
- Send states achieved by public actions - Encrypt private information
- Add received states to the open list

Multi-Agent Forward Search

Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
- Asynchronous!
- Send states achieved by public actions
- Encrypt private information
- Add received states to the open list

Multi-Agent Forward Search

Principle

- MAD-A* instance of MAFS
- Each agent searches its own search space (no projections)
- Asynchronous!
- Send states achieved by public actions
- Encrypt private information
- Add received states to the open list

Multi-Agent Forward Search

Heuristics

- Projected
- Compute on Π_{i} (including projected actions)
- Send with states
- Take maximum $h_{i}(s)$ and $h_{j}(s)$ when s received by i from j

Fast, computed individually
 Less informed

Multi-Agent Forward Search

Heuristics

- Projected
- Compute on Π_{i} (including projected actions)
- Send with states
- Take maximum $h_{i}(s)$ and $h_{j}(s)$ when s received by i from j
+ Fast, computed individually
- Less informed

Multi-Agent Forward Search

Heuristics

- Distributed
- Compute by all agents for each state
- Relaxations/FF, LM-Cut, Potential heuristics

+ More informed
 Slow, all agents must participate

Multi-Agent Forward Search

Heuristics

- Distributed
- Compute by all agents for each state
- Relaxations/FF, LM-Cut, Potential heuristics
+ More informed
- Slow, all agents must participate

Multi-Agent Forward Search

Heuristics

- Lazy-FF
- i computes RP
- Requests other agents for RP to solve private preconditions
- MA-Pot
- Distributed LP computation
- Potentials for $P^{\text {pub }}$ and $P_{i}^{\text {priv }}$ for each agent
- Sent with the state and summed-up independently

Multi-Agent Forward Search

Heuristics

- Lazy-FF
- i computes RP
- Requests other agents for RP to solve private preconditions
- MA-Pot
- Distributed LP computation
- Potentials for $P^{\text {pub }}$ and $P_{i}^{\text {priv }}$ for each agent
- Sent with the state and summed-up independently

Planning State Machine Planner

Idea

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{>}=\left\{\pi_{1}^{\mid>}, \ldots, \pi_{k}^{\mid \triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcup_{i=1}^{n} S_{i}^{P}$ - if $\pi_{l}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{l}^{1}, \ldots, \pi_{l}^{n}\right\}$ is a plan

- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans
(Note: Systematic qeneration necessary to avoid complete plan-space exploration)

Planning State Machine Planner

Idea

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{\triangleright}=\left\{\pi_{1}^{i \triangleright}, \ldots, \pi_{k}^{i \triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcup_{i=1}^{n} S_{i}^{P}$ - if $\pi_{i}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{i}^{1}, \ldots, \pi_{i}^{n}\right\}$ is a plan

- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans (Note: Systematic generation necessary to avoid complete plan-space exploration)

Planning State Machine Planner

Idea

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{\triangleright}=\left\{\pi_{1}^{i \triangleright}, \ldots, \pi_{k}^{\triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcup_{i=1}^{n} S_{i}^{\triangleright}$

- if $\pi_{l}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{l}^{1}, \ldots, \pi_{l}^{n}\right\}$ is a plan
- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans
(Note: Systematic generation necessary to avoid complete plan-space exploration)

Planning State Machine Planner

Idea

```
?
What about infinite number of plans (loops!)?
```


Planning State Machine Planner

Idea

- Planning State Machine (PSM)
- Concise representation of (infinite) number of plans
- Based on Finite Automata
- Projection

What is MAP good for?

- Factorization
- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
- Search notoriously hard to parallelize
- MAP-A* - better than generic techniques
- Privacy
- The reason MAP cannot be solved centrally
- What is that?

What is MAP good for?

- Factorization
- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
- Search notoriously hard to parallelize
- MAP-A* - better than generic techniques
- Privacy
- The reason MAP cannot be solved centrally - What is that?

What is MAP good for?

- Factorization
- Solve more but smaller problems
- How to factor the problem?
- Distributed/Parallelized computation
- Search notoriously hard to parallelize
- MAP-A* - better than generic techniques
- Privacy
- The reason MAP cannot be solved centrally
- What is that?

Privacy

Motivation

- Business cooperation/consortium
- Need to cooperate but do not want to disclose data and processes
- Sensitive data
- Medical computations
- Private data on the cloud
- Military coalition operations
- Need to cooperate but some data secret

Privacy
 In Computer Science

Secure Multiparty Computation

- Secure multiparty computation (MPC) (Yao 1982)
- Subfield of cryptography
- Compute a function f by a set of n parties p_{1}, \ldots, p_{n} such that each p_{i} knows part of the input of f.
- Compute f in a way that no party p_{i} learns more information about the inputs of other parties than what can be learned from the output of f.

Secure Multiparty Computation

Assumptions

- Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.
Malicious Can do whatever it wants to deceive and get information.

- Computation Information-theoretic privacy no assumptions on computation power of agents. Computational privacy polynomial bound \rightarrow factoring is hard, etc.
- Communication
- Synchronous/Asynchronous
- Retains order of messages (or not)

Secure Multiparty Computation

Assumptions

- Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.
Malicious Can do whatever it wants to deceive and get information.

- Computation Information-theoretic privacy no assumptions on computation power of agents.
Computational privacy polynomial bound \rightarrow factoring is hard, etc.
- Communication
- Synchronous/Asynchronous
- Retains order of messages (or not)

Secure Multiparty Computation

Assumptions

- Other agents

Semi-honest Attempts to get as much information as possible, but does not alter the protocol.
Malicious Can do whatever it wants to deceive and get information.

- Computation Information-theoretic privacy no assumptions on computation power of agents.
Computational privacy polynomial bound \rightarrow factoring is hard, etc.
- Communication
- Synchronous/Asynchronous
- Retains order of messages (or not)

Privacy
 In Multi-Agent Planning

- What is the private information?
- Existence and value(s) of private fact (or variable)
- Existence of private actions
- For a public action $a \in A_{i}^{\text {pub }}$, existence and value(s) of
- private pre $(a) \cap P_{i}^{\text {priv }}$
- private add(a) $\cap P_{i}^{\text {priv }}$
- private del $(a) \cap P_{i}^{\text {priv }}$

Privacy-preserving Planner

Simply not sending private information is not enough!

- Private information may leak (be deduced)
- Action is not applicable but the projection is ...
- Heuristic values

Privacy-preserving Planner

Simply not sending private information is not enough!

- Private information may leak (be deduced)
- Action is not applicable but the projection is ...
- Heuristic values ...

Privacy-preserving Planner

Recall PSM - where might private information leak?

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{\triangleright}=\left\{\pi_{1}^{i \triangleright}, \ldots, \pi_{k}^{\triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$

- if $\pi_{l}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{l}^{1}, \ldots, \pi_{l}^{n}\right\}$ is a plan
- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans

Privacy-preserving Planner

Recall PSM - where might private information leak?

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{\triangleright}=\left\{\pi_{1}^{i \triangleright}, \ldots, \pi_{k}^{i \triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$

- if $\pi_{l}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{l}^{1}, \ldots, \pi_{l}^{n}\right\}$ is a plan
- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans

Privacy-preserving Planner

Recall PSM - where might private information leak?

1. Each agent generates a set of plans $S_{i}=\left\{\pi_{1}^{i}, \ldots, \pi_{k}^{i}\right\}$
2. Public projection: $S_{i}^{>}=\left\{\pi_{1}^{i \triangleright}, \ldots, \pi_{k}^{i \triangleright}\right\}$

- π^{\triangleright}... public actions replaced with projections, private actions removed

3. Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$

- if $\pi_{l}^{\triangleright} \in \bigcap_{i=1}^{n} S_{i}^{\triangleright} \ldots\left\{\pi_{l}^{1}, \ldots, \pi_{l}^{n}\right\}$ is a plan
- if $\bigcap_{i=1}^{n} S_{i}^{\triangleright}=\emptyset$.. no solution, add more plans

Privacy-preserving Planner

PSM - solution

- Find intersection: $\bigcap_{i=1}^{n} S_{i}^{\triangleright}$ securely!
- Information-theoretic secure set intersection (Li\&Wu 2007)
- Computationally secure DFA intersection (Guanciale et al. 2014)
- (+ Securely select a solution at random)

Privacy-preserving Planner

PSM - solution?

- But! What if no solution found?
- Recall: "If no solution, add more plans"
- Information leaks!
- Assuming some systematic generation of plans (e.g. from shortest to longest)
- In iteration k all plans of length $<k$ already generated by all agents - If not accepted - some private preconditions must exist

Privacy-preserving Planner

PSM - solution?

- But! What if no solution found?
- Recall: "If no solution, add more plans"
- Information leaks!
- Assuming some systematic generation of plans (e.g. from shortest to longest)
- In iteration k all plans of length $<k$ already generated by all agents - If not accepted - some private preconditions must exist

Privacy-preserving Planner

PSM - solution?

- But! What if no solution found?
- Recall: "If no solution, add more plans"
- Information leaks!
- Assuming some systematic generation of plans (e.g. from shortest to longest)
- In iteration k all plans of length $<k$ already generated by all agents
- If not accepted - some private preconditions must exist

Privacy-preserving Planner

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
- Research question!
- Does it always hold?
- Research question!
- How to quantify leaked information (in general)
- Research question!

Privacy-preserving Planner

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
- Research question!
- Does it always hold?
- Research question!
- How to quantify leaked information (in general)
- Research question!

Privacy-preserving Planner
 PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem? - Research question!
- Does it always hold? - Research question!
- How to quantify leaked information (in general)
- Research question!

Privacy-preserving Planner

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
- Research question!
- Does it always hold?
- Research question!
- How to quantify leaked information (in general)
- Research question!

Privacy-preserving Planner

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
- Research question!
- Does it always hold?
- Research question!
- How to quantify leaked information (in general)
- Research question!

Privacy-preserving Planner

PSM - so can it be privacy-preserving?

Generate all plans up-front - not efficient!
Do just one iteration (with random plans) - not complete! Iterate systematically - information leaks!

- Is the non-completeness practically a problem?
- Research question!
- Does it always hold?
- Research question!
- How to quantify leaked information (in general)
- Research question!

