LP-based Heuristics
for Cost-optimal Classical Planning

1. Introduction and Overview

Florian Pommerening Gabriele Roger Malte Helmert
ICAPS 2015 Tutorial

June 7, 2015

Background: Linear Programs

Background: Linear Programs
0®000

Linear Programs and Integer Programs

Linear Program

A linear program (LP) consists of:

@ a finite set of real-valued variables V
e a finite set of linear inequalities (constraints) over V/

@ an objective function, which is a linear combination of V/

@ which should be minimized or maximized.

Integer program (IP): ditto, but with integer-valued variables

Background: Linear Programs
00®00

Linear Program: Example

Example:

maximize 2x —3y +z subject to

x+2y+z < 10
X —z < 0

x>0, y>0 z>0

~= unique optimal solution:
x =5, y =0, z=05 (objective value 15)

Background: Linear Programs
000®0

Solving Linear Programs and Integer Programs

Complexity:
@ LP solving is a polynomial-time problem.

e Finding solutions for IPs is NP-complete.

Common idea:

@ Approximate IP solution with corresponding LP
(LP relaxation).

Three Key Ideas in This Tutorial

000000

Three Key Ideas in This Tutorial

Three Key Ideas in This Tutorial
0®0000

Cost Partitioning

Idea 1: Cost Partitioning

@ create copies [y, ..., I, of planning task [1

@ each has its own operator cost function cost;
(otherwise identical to 1)

e for all o: require costi(0) + - - - + costp(0) < cost(0)

~~ sum of solution costs in copies is admissible heuristic:
hn, + -+ hy, < hp

Motivation:
@ method for obtaining additive admissible heuristics

@ very general and powerful

Three Key Ideas in This Tutorial
00®000

Operator Counting Constraints

Idea 2: Operator Counting Constraints

@ linear constraints whose variables denote
number of occurrences of a given operator

@ must be satisfied by every plan that solves the task

Examples:

o Y, + Yy >1 “must use o7 or oo at least once”

o Y, — Y, <0 “cannot use o; more often than 03"
Motivation:

@ declarative way to represent knowledge about solutions

@ allows reasoning about solutions to derive heuristic estimates

Three Key Ideas in This Tutorial
000®00

Potential Heuristics

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

@ Define simple numerical state features fi, ..., f,.

@ Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + -+ + wufn(s)
with weights (potentials) w; € R

e Find potentials for which h is admissible and well-informed.

v

Motivation:
@ declarative approach to heuristic design

@ heuristic very fast to compute if features are

Cost Partitioning

Cost Partitioning
oeo

Cost Partitioning

Idea 1: Cost Partitioning

@ create copies ly,..., I, of planning task 1

@ each has its own operator cost function cost; : O — R(J{
(otherwise identical to 1)

o for all o: require cost;(0) + - - - + costy(0) < cost(o)

~ sum of solution costs in copies is admissible heuristic:
hg, + -+ hn, < hf

Cost Partitioning
ooe

Cost Partitioning

o for admissible heuristics hq, ..., h,,
h(s) = hin,(s) + -+ hnn,(s)
is an admissible estimate
@ h(s) can be better or worse than any h; n(s)
— depending on cost partitioning
o strategies for defining cost-functions
e uniform: cost;(0) = cost(0)/n
e zero-one: full operator cost in one copy, zero in all others
o ...

Can we find an optimal cost partitioning?

Optimal Cost Partitioning

9000000000

Optimal Cost Partitioning

Optimal Cost Partitioning
O®00000000

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs
@ Use variables for cost of each operator in each task copy
@ Express heuristic values with linear constraints

@ Maximize sum of heuristic values subject to these constraints

LPs known for
@ abstraction heuristics

@ landmark heuristic

Optimal Cost Partitioning
0O®0000000

Optimal Cost Partitioning for Abstractions

Abstractions
@ Simplified versions of the planning task, e.g. projections

@ Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?

Optimal Cost Partitioning
0O®0000000

Optimal Cost Partitioning for Abstractions

Abstractions
@ Simplified versions of the planning task, e.g. projections

@ Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
~» Shortest path problem in abstract transition system

Optimal Cost Partitioning
000®000000

LP for Shortest Path in State Space

Variables

Distance. for each state s,
GoalDist

Objective
Maximize GoalDist

Distance;, = 0 for the initial state s;

Distanceys < Distances + cost(o) for all transition s > s’

GoalDist < Distances, for all goal states s,

Optimal Cost Partitioning
0000®00000

Optimal Cost Partitioning for Abstractions |

Variables

For each abstraction a:

Distance! for each abstract state s,
costy for each operator o,
GoalDist®

Objective
Maximize), GoalDist®

Optimal Cost Partitioning
00000e0000

Optimal Cost Partitioning for Abstractions Il

for all operators o

Za Costyy < cost(o)

Costy >0 for all abstractions «
and for all abstractions «

Distance;, = 0 for the abstract initial state s;

Distance?, < DistanceS 4 Cost? for all transition s > s’

GoalDist”™ < Distancey, for all abstract goal states s,

Optimal Cost Partitioning
000000®000

Optimal Cost Partitioning for Landmarks

Disjunctive action landmark
@ Set of operators
@ Every plan uses at least one of them

@ Landmark cost = cost of cheapest operator

Optimal Cost Partitioning
0000000800

Optimal Cost Partitioning for Landmarks

Variables

Cost; for each landmark L

Objective
Maximize), Cost;

Z Cost; < cost(o) for all operators o
L:ocL

Cost; >0 for all landmarks L

Optimal Cost Partitioning
©00000000e

Caution

A word of warning

@ optimization for every state gives
best-possible cost partitioning

@ but takes time

Better heuristic guidance often does not outweigh the overhead.

Operator-counting Framework

®00000

Operator-counting Framework

Operator-counting Framework
0@0000

Operator Counting

Reminder:

Idea 2: Operator Counting Constraints

@ linear constraints whose variables denote
number of occurrences of a given operator

@ must be satisfied by every plan that solves the task

Examples:

o Y, + Yy >1 “must use o7 or oo at least once”

o Y, — Y, <0 “cannot use o; more often than 03"
Motivation:

o declarative way to represent knowledge about solutions

@ allows reasoning about solutions to derive heuristic estimates

Operator-counting Framework
[e]e] Yolole}

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)
(1,1,2) (0,0,0)
(1,2.1) ©01)
(1,3,1) (302
(3,2,2)
(2.2,0) (2,2,1) (1,2,0)

(3,1,0)

Operator-counting Framework
[e]e] Yolole}

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

(3,0,2)

(1,31)

(2,2,0)
(1,2,0)

(3,1,0)

Operator-counting Framework
[e]e] Yolole}

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

(1,2,0)
“A and B together

cost at least 4"

(3,1,0)

Operator-counting Framework
[e]e] Yolole}

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2)

“You need C

at least once”
(1,2,1) @

(0,0,0)

N\

(2,20)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"
(3.1,0)

Operator-counting Framework

00e@000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2) (0,0,0)

“You need C

at least once”
(1,2,1)

(0,0,1)

(2,2,0)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"
(3.1,0)

Operator-counting Framework

00e@000

Operator Counting Heuristics

Operator occurrences in potential plans

(2,1,0)

(1,1,2) (0,0,0)

“You need C

at least once”
(1,2,1) @

(22,0)

(1,2,0)
“A and B together

cost at least 4"

“Use A once
more than C"

(3,1,0)

Operator-counting Framework
[e]eleY Tole}

Operator-counting Heuristics

Operator-counting IP/LP Heuristic

Minimize Z Y, - cost(o) subject to
o

Y, > 0 and some operator-counting constraints

4

Operator-counting constraint

@ Set of linear inequalities

@ For every plan 7 there is an LP-solution where
Y, is the number of occurrences of o in 7 .

Operator-counting Framework
0000®0

Properties of Operator-counting Heuristics

Admissibility

Operator-counting (IP and LP) heuristics are admissible.

Computation time
Operator-counting LP heuristics are solvable in polynomial time.

Adding constraints

Adding constraints can only make the heuristic more informed.

Examples
0008000

Example 3: State-equation Heuristic

Also known as
o Order-relaxation heuristic (van den Briel et al. 2007)
@ State-equation heuristic (Bonet 2013)
@ Flow-based heuristic (van den Briel and Bonet 2014)
Main idea:

e Facts can be produced (made true) or consumed (made false)
by an operator

@ Number of producing and consuming operators must balance
out for each fact

Examples
000000

Example 3: State-equation Heuristic

Net-change constraint for fact f

ch-shH=Yv - S v

f € eff{0) f € pre(o)

Remark:
@ Assumes transition normal form (not a limitation)

o Operator mentions same variables in precondition and effect
e General form of constraints more complicated

~~ presentation: Tuesday, first afternoon session

Overview

Oe0000

Potential Heuristics

Reminder:

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

@ Define simple numerical state features fi, ..., f,.

@ Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + - - - + wifp(s)
with weights (potentials) w; € R

@ Find potentials for which h is admissible and well-informed.

4

Motivation:
@ declarative approach to heuristic design

@ heuristic very fast to compute if features are

Overview
©00®000

Comparison to Previous Parts (1)

What is the same as in operator-counting constraints:

e We again use LPs to compute (admissible) heuristic values
(spoiler alert!)

Overview
00000

Comparison to Previous Parts (2)

What is different from operator-counting constraints
(computationally):
e With potential heuristics, solving one LP defines the entire
heuristic function, not just the estimate for a single state.

@ Hence we only need one LP solver call,
making LP solving much less time-critical.

Overview
©0000®0

Comparison to Previous Parts (3)

What is different from operator-counting constraints
(conceptually):
@ axiomatic approach for defining heuristics:

e What should a heuristic look like mathematically?
o Which properties should it have?

@ define a space of interesting heuristics

@ use optimization to pick a good representative

Potential Heuristics

Potential Heuristics
0®00

Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S — R.

Potential Heuristics
00®0

Potential Heuristics

Definition (potential heuristic)

A potential heuristic for a set of features F = {f1,...,p}
is a heuristic function h defined as a linear combination
of the features:

h(s) = wifi(s) + - - + wpfa(s)
with weights (potentials) w; € R.

~~ cf. evaluation functions for board games like chess

Potential Heuristics

[eJele])

Atomic Potential Heuristics

Atomic features test if some proposition is true in a state:

Definition (atomic feature)

Let X = x be an atomic proposition of a planning task.

The atomic feature fx—, is defined as:

(s 1 if variable X has value x in state s
—x(s) =
X=x 0 otherwise

@ We only consider atomic potential heuristics,
which are based on the set of all atomic features.

@ Example for a task with state variables X and Y

h(S) = 3fX:a =+ %fX:b — 2fX:c —+ gfy:d

Finding Good Potential Heuristics

@000

Finding Good Potential Heuristics

Finding Good Potential Heuristics
0®00

How to Set the Weights?

We want to find good atomic potential heuristics:
@ admissible
@ consistent

@ well-informed

How to achieve this? Linear programming to the rescue!

Finding Good Potential Heuristics
00e0

Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness (i.e., h(s) = 0 for goal states)

Z wr =0

goal facts f

| \

Consistency

wa - wa < cost(o) for all operators o

f consumed f produced
y o by o

Remarks:
@ assumes transition normal form (not a limitation)

@ goal-aware and consistent = admissible and consistent

Finding Good Potential Heuristics
oooe

Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

~+ encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:
@ maximize heuristic value of a given state (e.g., initial state)

@ maximize average heuristic value of all states
(including unreachable ones)

@ maximize average heuristic value of some sample states
@ minimize estimated search effort

~~ see Seipp et al. presentation (joint ICAPS/SoCS session)

Optimal Cost Partitioning

@ Michael Katz, Carmel Domshlak.
Optimal Additive Composition of Abstraction-based
Admissible Heuristics. ICAPS 2008

e optimal cost partitioning for abstractions
@ Erez Karpas, Carmel Domshlak.
Cost-optimal Planning with Landmarks. 1JCAI 2009

e optimal cost partitioning for landmarks
e we showed a simplified version with fewer variables which can
be traced back to Keyder, Richter, and Helmert (2010)
o Blai Bonet, Malte Helmert.
Strengthening Landmark Heuristics via Hitting Sets.
ECAI 2010

e optimal cost partitioning for landmarks (dual)

Operator Counting

@ Florian Pommerening, Gabriele Roger,

Malte Helmert, Blai Bonet.
LP-based Heuristics for Cost-optimal Planning. ICAPS 2014

e operator-counting framework
o Florian Pommerening, Gabriele Roger, Malte Helmert.

Getting the Most Out of Pattern Databases for Classical
Planning. 1JCAI 2013
e post-hoc optimization
@ Tatsuyai Imai, Alex Fukunaga.
A Practical, Integer-linear Programming Model for the
Delete-relaxation in Cost-optimal planning. ECAI 2014
e operator-counting constraints for relaxed planning

@ Toby Davies, Adrian R. Pearce,

Peter J. Stuckey, Nir Lipovetzky.
Sequencing Operator Counts. ICAPS 2015

e new constraints if operator counts do not correspond to a plan

State-equation Heuristic

@ Menkes van den Briel, J. Benton,

Subbarao Kambhampati, Thomas Vossen.
An LP-Based Heuristic for Optimal Planning. CP 2007

e state equation heuristic
o Blai Bonet.

An Admissible Heuristic for SAS+ Planning Obtained from
the State Equation. IJCAI 2013

e state equation heuristic

@ Blai Bonet, Menkes van den Briel.
Flow-based Heuristics for Optimal Planning: Landmarks and
Merges. ICAPS 2014

e state equation heuristic with dynamic fluent merging

Connections and Potential Heuristic

@ Florian Pommerening, Malte Helmert,
Gabriele Roger, Jendrik Seipp.
From Non-Negative to General Operator Cost Partitioning.
AAAI 2015
e general cost partitioning
e potential heuristic
e connection of the three concepts

@ Jendrik Seipp, Florian Pommerening, Malte Helmert.
New Optimization Functions for Potential Heuristics.
ICAPS 2015

e quality objectives for potential heuristics

