
LP-based Heuristics
for Cost-optimal Classical Planning

Florian Pommerening Gabriele Röger Malte Helmert

Based on: ICAPS 2015 Tutorial

March 2017



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Three Key Ideas



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Cost Partitioning

Idea 1: Cost Partitioning

create copies Π1, . . . ,Πn of planning task Π

each has its own operator cost function costi

(otherwise identical to Π)

for all o: require cost1(o) + · · ·+ costn(o) ≤ cost(o)

 sum of solution costs in copies is admissible heuristic:
h∗Π1

+ · · ·+ h∗Πn
≤ h∗Π

Motivation:

method for obtaining additive admissible heuristics

very general and powerful



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Operator Counting Constraints

Idea 2: Operator Counting Constraints

linear constraints whose variables denote
number of occurrences of a given operator

must be satisfied by every plan that solves the task

Examples:

Yo1 + Yo2 ≥ 1 “must use o1 or o2 at least once”

Yo1 − Yo3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Potential Heuristics

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
Find potentials for which h is admissible and well-informed.

Motivation:

declarative approach to heuristic design

heuristic very fast to compute if features are fast to compute



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Tutorial Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Cost Partitioning

Idea 1: Cost Partitioning

create copies Π1, . . . ,Πn of planning task Π

each has its own operator cost function costi : O → R+
0

(otherwise identical to Π)

for all o: require cost1(o) + · · ·+ costn(o) ≤ cost(o)

 sum of solution costs in copies is admissible heuristic:
h∗Π1

+ · · ·+ h∗Πn
≤ h∗Π



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning

Optimal Cost Partitioning with LPs

Use variables for cost of each operator in each task copy

Express heuristic values with linear constraints

Maximize sum of heuristic values subject to these constraints

LPs known for

abstraction heuristics

landmark heuristic



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Abstractions

Abstractions

Simplified versions of the planning task, e.g. projections

Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
 Shortest path problem in abstract transition system



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Abstractions

Abstractions

Simplified versions of the planning task, e.g. projections

Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
 Shortest path problem in abstract transition system



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

LP for Shortest Path in State Space

Variables

Distances for each state s,
GoalDist

Objective

Maximize GoalDist

Subject to

DistancesI
= 0 for the initial state sI

Distances′ ≤ Distances + cost(o) for all transition s
o−→ s ′

GoalDist ≤ Distances? for all goal states s?



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Abstractions I

Variables

For each abstraction α:
Distanceαs for each abstract state s,
costα(o) for each operator o,
GoalDistα

Objective

Maximize
∑

α GoalDistα

. . .



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Abstractions II

Subject to

for all operators o∑
α

Costαo ≤ cost(o)

Costαo ≥ 0 for all abstractions α

and for all abstractions α

DistanceαsI
= 0 for the abstract initial state sI

Distanceαs′ ≤ Distanceαs + Costαo for all transition s
o−→ s ′

GoalDistα ≤ Distanceαs? for all abstract goal states s?



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Landmarks

Disjunctive action landmark

Set of operators

Every plan uses at least one of them

Landmark cost = cost of cheapest operator



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Landmarks

Variables

CostL for each landmark L

Objective

Maximize
∑

L CostL

Subject to ∑
L:o∈L

CostL ≤ cost(o) for all operators o



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Optimal Cost Partitioning for Landmarks (Dual)

Variables

Occurrenceso for each operator o

Objective

Minimize
∑

o Occurrenceso · cost(o)

Subject to ∑
o∈L

Occurrenceso ≥ 1 for all landmarks L

Occurrenceso ≥ 0 for all operators o



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Tutorial Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Operator-counting



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Operator Counting

Reminder:

Idea 2: Operator Counting Constraints

linear constraints whose variables denote
number of occurrences of a given operator

must be satisfied by every plan that solves the task

Examples:

Yo1 + Yo2 ≥ 1 “must use o1 or o2 at least once”

Yo1 − Yo3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Operator-counting Heuristics

Operator-counting IP/LP Heuristic

Minimize
∑

o

Yo · cost(o) subject to

Yo ≥ 0 and some operator-counting constraints

Operator-counting constraint

Set of linear inequalities

For every plan π there is an LP-solution where
Yo is the number of occurrences of o in π .



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (SEQ)

Main idea:

Facts can be produced (made true) or consumed (made false)
by an operator

Number of producing and consuming operators must balance
out for each fact



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic

Net-change constraint for fact f

G (f )− S(f ) =
∑

f ∈ eff(o)

Yo −
∑

f ∈ pre(o)

Yo

Remark:

Assumes transition normal form (not a limitation)

Operator mentions same variables in precondition and effect
General form of constraints more complicated



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

0 =
∑

o produces f

Yo −
∑

o consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) =
∑

o produces f

Yo −
∑

o consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) =
∑

o produces f

Yo −
∑

o consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) =
∑

o always
produces f

Yo +
∑

o sometimes
produces f

Yo −
∑

o always
consumes f

Yo −
∑

o sometimes
consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) =
∑

o always
produces f

Yo +
∑

o sometimes
produces f

Yo −
∑

o always
consumes f

Yo −
∑

o sometimes
consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) ≤
∑

o always
produces f

Yo +
∑

o sometimes
produces f

Yo −
∑

o always
consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

State-equation Heuristic (Constraints)

Net-change constraint for fact f

G (f )−S(f ) ≤
∑

o always
produces f

Yo +
∑

o sometimes
produces f

Yo −
∑

o always
consumes f

Yo

Special cases for goal and initial state

Add/Subtract one from net change

Special case for operators that might produce/consume1

Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Tutorial Structure

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Potential Heuristics



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Potential Heuristics

Reminder:

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

Define simple numerical state features f1, . . . , fn.

Consider heuristics that are linear combinations of features:

h(s) = w1f1(s) + · · ·+ wnfn(s)

with weights (potentials) wi ∈ R
Find potentials for which h is admissible and well-informed.

Motivation:

declarative approach to heuristic design

heuristic very fast to compute if features are



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S → R.



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Atomic Potential Heuristics

Atomic features test if some proposition is true in a state:

Definition (atomic feature)

Let X = x be an atomic proposition of a planning task.

The atomic feature fX =x is defined as:

fX =x (s) =

{
1 if variable X has value x in state s

0 otherwise

We only consider atomic potential heuristics,
which are based on the set of all atomic features.

Example for a task with state variables X and Y :

h(s) = 3fX =a + 1
2 fX =b − 2fX =c + 5

2 fY =d



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness (i.e., h(s) = 0 for goal states)∑
goal facts f

wf = 0

Consistency∑
f consumed

by o

wf −
∑

f produced
by o

wf ≤ cost(o) for all operators o

Remarks:

assumes transition normal form (not a limitation)

goal-aware and consistent = admissible and consistent



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

 encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:

maximize heuristic value of a given state (e.g., initial state)

maximize average heuristic value of all states
(including unreachable ones)

maximize average heuristic value of some sample states

minimize estimated search effort



Three Key Ideas Optimal Cost Partitioning Operator-counting State-equation Heuristic Potential Heuristics

The End

1 Introduction and Overview

2 Cost Partitioning

3 Operator Counting

4 Potential Heuristics

Thank you for your attention!


	Three Key Ideas
	Optimal Cost Partitioning
	Operator-counting
	State-equation Heuristic
	Potential Heuristics

