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Cost Partitioning

Idea 1: Cost Partitioning

@ create copies [y,..., I, of planning task [1

@ each has its own operator cost function cost;
(otherwise identical to 1)

e for all o: require costi(0) + - - - + costp(0) < cost(0)

~~ sum of solution costs in copies is admissible heuristic:
hg, + -+ hp, < hq

Motivation:
@ method for obtaining additive admissible heuristics

@ very general and powerful
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Operator Counting Constraints

Idea 2: Operator Counting Constraints

@ linear constraints whose variables denote
number of occurrences of a given operator

@ must be satisfied by every plan that solves the task

Examples:

o Y, + Yy >1 “must use o7 or oo at least once”

o Y, — Y, <0 “cannot use o; more often than 03"
Motivation:

@ declarative way to represent knowledge about solutions

@ allows reasoning about solutions to derive heuristic estimates
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Potential Heuristics

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

@ Define simple numerical state features fi, ..., f,.

@ Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + - + wufn(s)
with weights (potentials) w; € R

e Find potentials for which h is admissible and well-informed.

v

Motivation:
@ declarative approach to heuristic design

@ heuristic very fast to compute if features are fast to compute
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Cost Partitioning

Idea 1: Cost Partitioning

@ create copies ly,..., I, of planning task 1

@ each has its own operator cost function cost; : O — R(J{
(otherwise identical to 1)

o for all o: require cost(0) + - - - + costy(0) < cost(o)

~ sum of solution costs in copies is admissible heuristic:
hg, + -+ hn, < hf
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Optimal Cost Partitioning

Optimal Cost Partitioning with LPs
@ Use variables for cost of each operator in each task copy
@ Express heuristic values with linear constraints

@ Maximize sum of heuristic values subject to these constraints

LPs known for
@ abstraction heuristics

@ landmark heuristic
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Optimal Cost Partitioning for Abstractions

Abstractions
@ Simplified versions of the planning task, e.g. projections

@ Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
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Optimal Cost Partitioning for Abstractions

Abstractions
@ Simplified versions of the planning task, e.g. projections

@ Cost of optimal abstract plan is admissible estimate

How to express the heuristic value as linear constraints?
~» Shortest path problem in abstract transition system
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LP for Shortest Path in State Space

Variables

Distances for each state s,
GoalDist

Objective
Maximize GoalDist

Distance;, = 0 for the initial state s;

Distanceys < Distance; + cost(o) for all transition s > s’

GoalDist < Distances, for all goal states s,
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Optimal Cost Partitioning for Abstractions |

Variables

For each abstraction a:

Distance! for each abstract state s,
cost”(o) for each operator o,
GoalDist®

Objective
Maximize ), GoalDist®
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Optimal Cost Partitioning for Abstractions Il

for all operators o

Za Costy < cost(o)

Costgy >0 for all abstractions «

and for all abstractions «
Distanceg, =0 for the abstract initial state s;
% < Distance? + Cost for all transition s = s’

Distance,
GoalDist® < Distancey for all abstract goal states s,
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Optimal Cost Partitioning for Landmarks

Disjunctive action landmark
@ Set of operators
@ Every plan uses at least one of them

@ Landmark cost = cost of cheapest operator
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Optimal Cost Partitioning for Landmarks

Variables
Cost; for each landmark L

Objective

Maximize ), Cost;

Z Cost; < cost(o) for all operators o
L:ocl
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Optimal Cost Partitioning for Landmarks (Dual)

Variables

Occurrences, for each operator o

Objective

Minimize ) Occurrences,, - cost(0)

Z Occurrences, > 1 for all landmarks L
o€l

Occurrences, > 0 for all operators o
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Tutorial Structure
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Operator Counting

Reminder:

Idea 2: Operator Counting Constraints

@ linear constraints whose variables denote
number of occurrences of a given operator

@ must be satisfied by every plan that solves the task

Examples:

o Y, + Yy >1 “must use o7 or 0o at least once”

o Y, — Y, <0 “cannot use o; more often than 03"
Motivation:

o declarative way to represent knowledge about solutions

@ allows reasoning about solutions to derive heuristic estimates
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Operator-counting Heuristics

Operator-counting IP/LP Heuristic

Minimize Z Y, - cost(o) subject to
o

Y, > 0 and some operator-counting constraints

4

Operator-counting constraint

@ Set of linear inequalities

@ For every plan 7 there is an LP-solution where
Y, is the number of occurrences of o in 7 .
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State-equation Heuristic (SEQ)

Main idea:

e Facts can be produced (made true) or consumed (made false)
by an operator

@ Number of producing and consuming operators must balance
out for each fact
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State-equation Heuristic

Net-change constraint for fact f

ah-shH=%v. - S v

f € eff{0) f € pre(o)

Remark:
@ Assumes transition normal form (not a limitation)

o Operator mentions same variables in precondition and effect
o General form of constraints more complicated
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

o= YVv. - Y Y

o produces f o consumes f
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(H-S(Fl= D Yo = > Yo

o produces f o consumes f

@ Special cases for goal and initial state
o Add/Subtract one from net change
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(H-S(F= D Yo = > Y

o produces f o consumes f

@ Special cases for goal and initial state
o Add/Subtract one from net change
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(F)=S(F)= D Yo + D> Yo = D Yo = DY

o always o0 sometimes o always 0 sometimes
produces f produces f consumes f consumes f

@ Special cases for goal and initial state

o Add/Subtract one from net change

o Special case for operators that might produce/consume!

1Task normalization can get rid of this special case.
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(F)=S(F)= D Yo + D> Yo = D Yo = DY

o always o0 sometimes o always 0 sometimes
produces f produces f consumes f consumes f

@ Special cases for goal and initial state
o Add/Subtract one from net change
o Special case for operators that might produce/consume!

e Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(H-S(H)< D Yo + D> Yo = D Y

o always o0 sometimes o always
produces f produces f consumes f

@ Special cases for goal and initial state
o Add/Subtract one from net change
o Special case for operators that might produce/consume!

e Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.
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State-equation Heuristic (Constraints)

Net-change constraint for fact f

G(H-S(H)< D Yo + D> Yo = D Y

o always o0 sometimes o always
produces f produces f consumes f

@ Special cases for goal and initial state
o Add/Subtract one from net change
o Special case for operators that might produce/consume!

e Use upper bound and inequality instead of equality

1Task normalization can get rid of this special case.
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Potential Heuristics

Reminder:

Idea 3: Potential Heuristics

Heuristic design as an optimization problem:

@ Define simple numerical state features fi, ..., f,.

@ Consider heuristics that are linear combinations of features:
h(s) = wifi(s) + - - + wnfp(s)
with weights (potentials) w; € R

@ Find potentials for which h is admissible and well-informed.

Motivation:
@ declarative approach to heuristic design

@ heuristic very fast to compute if features are
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Features

Definition (feature)

A (state) feature for a planning task is a numerical function
defined on the states of the task: f : S — R.
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Atomic Potential Heuristics

Atomic features test if some proposition is true in a state:

Definition (atomic feature)

Let X = x be an atomic proposition of a planning task.

The atomic feature fx—, is defined as:

fe(5) 1 if variable X has value x in state s
—x(s) =
X=x 0 otherwise

@ We only consider atomic potential heuristics,
which are based on the set of all atomic features.

@ Example for a task with state variables X and Y

h(S) = 3fX:a =+ %fX:b — 2fX:c —+ gfy:d
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Admissible and Consistent Potential Heuristics

Constraints on potentials characterize (= are necessary and
sufficient for) admissible and consistent atomic potential heuristics:

Goal-awareness (i.e., h(s) = 0 for goal states)

Z wr =0

goal facts f

| A\

Consistency

wa - wa < cost(o) for all operators o

f consumed f produced
y o by o

Remarks:
@ assumes transition normal form (not a limitation)

@ goal-aware and consistent = admissible and consistent
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Well-Informed Potential Heuristics

How to find a well-informed potential heuristic?

~+ encode quality metric in the objective function
and use LP solver to find a heuristic maximizing it

Examples:
@ maximize heuristic value of a given state (e.g., initial state)

@ maximize average heuristic value of all states
(including unreachable ones)

@ maximize average heuristic value of some sample states

@ minimize estimated search effort
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Thank you for your attention!



	Three Key Ideas
	Optimal Cost Partitioning
	Operator-counting
	State-equation Heuristic
	Potential Heuristics

