Landmarks

Michal Štolba stolba@agents.fel.cvut.cz

PAH (Planning and Games)

M.Štolba (PAH)

Landmarks

Tutorial 5 1 / 7

Overview

Planners and Heuristics

Planner	Heuristic(s)	Description	Admissible
FF	FF	Sub-optimal relaxed plan	NO
fd-ms	Merge&Shrink	Abstraction heuristic	YES
fd-Imcut	LM-Cut	Relaxation heuristic based on landmarks	YES
LAMA	FF + Landmarks	FF and Landmark heuristic	NO
mercury	Red-Black relaxation	Sub-optimal plan in partial relaxation	NO
symba	Abstraction	Regressively built abstraction	YES

・ロト ・日下 ・ ヨト ・

Landmarks

Action Landmark

Definition

Action that must be used in all plans.

M.Štolba (

Disjunctive Action Landmark

Definition

Set *L* of actions such that in each plan at least one $a \in L$ must be used.

Definition

$$cost(L) = \min_{a \in L} cost(a)$$

M.Štolba (

Disjunctive Action Landmark

Definition

Set *L* of actions such that in each plan at least one $a \in L$ must be used.

Definition

$$cost(L) = \min_{a \in L} cost(a)$$

M.Štolba	

- Admissible landmark-based heuristic
- Lower estimate of optimal relaxed plan
- Using disjunctive action landmarks, for a set \mathscr{L} of landmarks:

$$h_{\mathsf{LM-Cut}} = \sum_{L \in \mathscr{L}} \mathsf{cost}(L)$$

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $h_{\max}(p) = \min_{\substack{p \in \operatorname{add}(a)}} h_{\max}(a) + \operatorname{cost}(a)$ $h_{\max}(a) = \max_{\substack{p \in \operatorname{pre}(a)}} h_{\max}(p)$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

< 回 > < 三 > < 三 >

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $h_{\max}(p) = \min_{\substack{p \in \text{add}(a)}} h_{\max}(a) + \text{cost}(a)$ $h_{\max}(a) = \max_{\substack{p \in \text{pre}(a)}} h_{\max}(p)$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

A > + = + + =

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $egin{aligned} h_{\max}(p) &= \min_{p \in \operatorname{add}(a)} h_{\max}(a) + \operatorname{cost}(a) \ h_{\max}(a) &= \max_{p \in \operatorname{pre}(a)} h_{\max}(p) \end{aligned}$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $egin{aligned} h_{\max}(p) &= \min_{p \in \operatorname{add}(a)} h_{\max}(a) + \operatorname{cost}(a) \ h_{\max}(a) &= \max_{p \in \operatorname{pre}(a)} h_{\max}(p) \end{aligned}$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

A (10) A (10)

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $egin{aligned} &h_{\max}(p) = \min_{p \in ext{add}(a)} h_{\max}(a) + ext{cost}(a) \ &h_{\max}(a) = \max_{p \in ext{pre}(a)} h_{\max}(p) \end{aligned}$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $egin{aligned} &h_{\max}(p) = \min_{p \in ext{add}(a)} h_{\max}(a) + ext{cost}(a) \ &h_{\max}(a) = \max_{p \in ext{pre}(a)} h_{\max}(p) \end{aligned}$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

How to find the landmarks

- 1. Find preconditions which justify the cost of actions
 - ► Using *h*_{max}:

 $egin{aligned} &h_{\max}(p) = \min_{p \in ext{add}(a)} h_{\max}(a) + ext{cost}(a) \ &h_{\max}(a) = \max_{p \in ext{pre}(a)} h_{\max}(p) \end{aligned}$

- 2. Construct a justification graph using only those preconditions
- 3. Find a cut in the justification graph
- 4. The cut forms a disjunctive action landmark
- 5. **Discount the cost** of the landmark from the costs of all actions in the landmark
 - Results in a cost-partitioning
- 6. Start all over again (with the modified costs)
 - Until $h_{\max}(g) = 0$

向下 イヨト イヨト

How to find the cut

- ► In the justification graph *J*:
 - 1. Find all facts p from which g is reachable by a 0-cost path $ightarrow V_g$
 - 2. Find all facts p' reachable from *i* without visiting a fact in V^*
 - 3. Edges between facts in V^* and V_g form the cut

• • • • • • • • • • • •