LM-Cut Heuristic

Daniel Fišer

March 13, 2017

STRIPS

A problem in STRIPS is a tuple $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$

- \mathcal{F} is a finite set of facts
- $s_{\text {init }} \subseteq \mathcal{F}$ is an initial state; $s_{\text {goal }} \subseteq \mathcal{F}$ is a goal specification
- \mathcal{O} is a set of well-formed operators o specified by pre $(o) \subseteq \mathcal{F}$, $\operatorname{del}(o) \subseteq \mathcal{F}$, and $\operatorname{add}(o) \subseteq \mathcal{F}$
- $c: \mathcal{O} \mapsto \mathbb{R}_{0}^{+}$is a cost function.
- A state $s \subseteq \mathcal{F}$; a goal state $s_{g} \supseteq s_{\text {goal }}$.
- An operator o is applicable in a state s iff $\operatorname{pre}(o) \subseteq s$ and the resulting state of applying o is $o[s]=(s \backslash \operatorname{del}(o)) \cup \operatorname{add}(o)$.
- A sequence of operators $\pi=\left\langle o_{1}, \ldots, o_{n}\right\rangle: \pi[s]=o_{n}\left[\ldots o_{2}\left[o_{1}[s]\right] \ldots\right]$.
- π is a plan iff $s_{\text {goal }} \subseteq \pi\left[s_{\text {init }}\right]$.

A relaxed problem Π^{+}is derived from Π by ignoring all delete effects.

(Action/Operator) Landmark

Definition

A landmark $L \subseteq \mathcal{O}$ is a set of operators such that every plan π must contain at least one operator from L.

This type of landmark is sometimes also called action landmark or disjunctive action landmark.

$\mathrm{h}_{c_{i}}^{\max }(\mathrm{s})$ for a state s and a cost function c_{i}

$$
\begin{aligned}
\forall f \in s: \mathrm{h}_{c_{i}}^{\max }(f) & =0 \\
\forall f \in \mathcal{F} \backslash s: \mathrm{h}_{c_{i}}^{\max }(f) & =\min _{o \in \mathcal{O}, f \in \operatorname{add}(o)}\left(\mathrm{h}_{c_{i}}^{\max }(o)+c_{i}(o)\right) \\
\forall o \in \mathcal{O}: \mathrm{h}_{c_{i}}^{\max }(o) & =\max _{f \in \operatorname{pre}(o)} \mathrm{h}_{c_{i}}^{\max }(f) \\
\mathrm{h}_{c_{i}}^{\max }(s) & =\max _{f \in s_{\text {goal }}} \mathrm{h}_{c_{i}}^{\max }(f)
\end{aligned}
$$

Algorithm 1: $\mathrm{h}_{c_{i}}^{\max }$

Input: $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, c_{i}\right\rangle$, state s
Output: $\mathrm{h}_{c_{i}}^{\max }(f) \forall f \in \mathcal{F}$
1 Initialize min priority queue PQ.init $(\{(f, 0) \mid f \in s\} \cup\{(f, \infty) \mid f \in \mathcal{F} \backslash s\})$;
2 Initialize number of unsatisfied preconditions: $U(o) \leftarrow|\operatorname{pre}(o)| \forall o \in \mathcal{O}$;
3 while not PQ.empty() do
$\left(f, \mathrm{~h}_{c_{i}}^{\max }(f)\right) \leftarrow \mathrm{PQ} \cdot \mathrm{pop}() / *$ Pop the element with the lowest $\mathrm{h}_{c_{i}}^{\max }(\mathrm{f}) \quad$ */ for each $o \in \mathcal{O}, f \in \operatorname{pre}(o)$ do
$U(o) \leftarrow U(o)-1$;
if $U(o)=0$ then
/* $\mathrm{h}_{c_{i}}^{\max }$ (f) must be $\max _{g \in \operatorname{pre}(o)} \mathrm{h}_{c_{i}}^{\max }(g)$ because of PQ \quad // PQ.update $\left(\left\{\left(g, \mathrm{~h}_{c_{i}}^{\max }(f)+c_{i}(o)\right) \mid g \in \operatorname{add}(o)\right\}\right)$; /* PQ.update() can only decrease keys.
end
end

Justification Graph

Construction of Justification Graph for State s

- Given a set of operators \mathcal{O}, a cost function c_{i} and $h_{c_{i}}^{\max }(\mathrm{f})$ for all $f \in \mathcal{F}$.
- Set $p(o)=\arg \max \mathrm{h}_{c_{i}}^{\max }(f)$ for each $o \in \mathcal{O}$ (breaking ties arbitrarily). $f \in \operatorname{pre}(o)$
- Create a graph node for each fact $f \in \mathcal{F}$.
- For each operator o and each fact $f \in \operatorname{pre}(o)$, create an edge from $p(o)$ to f with cost $c_{i}(o)$ and label o.
- Add a node s^{\prime} and zero-cost edges from s^{\prime} to f for each $f \in s$.
- Add a node t and a zero-cost edge from $\arg \max h_{c_{i}}^{\max }(f)$ to t.

$$
f \in s_{\text {goal }}
$$

$s-t$-cut

Construction of $s-t$-cut $C_{i}=\left(V_{i}^{0}, V_{i}^{\star} \cup V_{i}^{b}\right)$

- V_{i}^{\star} contains all facts from which t can be reached through a zero-cost path.
- V_{i}^{0} contains all facts reachable from s without passing through any fact from V_{i}^{\star}.
- V_{i}^{b} contains all remaining facts.
- Clearly $t \in V_{i}^{\star}$ and $s \in V_{i}^{0}$.
- Landmark L_{i} is a set of labels of the edges that cross the cut C_{i} (i.e., lead from V_{i}^{0} to $\left.V_{i}^{\star}\right)$.

LM-Cut Heuristics

$h^{\text {LM-cut }}(\mathrm{s})$ for $\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {goal }}, c\right\rangle$
(1) Set $i=1$ and $c_{1}=c$ and $\mathrm{h}^{\mathrm{LM}-\mathrm{cut}}(s)=0$.
(2) Compute $\mathrm{h}_{c_{i}}^{\max }(\mathrm{f})$ for all facts $f \in \mathcal{F}$, terminate if $\mathrm{h}_{c_{i}}^{\max }(s)=0$.
(3) Construct the justification graph.
(9) Construct an s-t-cut C_{i} and obtain the landmark L_{i}.
(3) Let $m_{i}=\min _{o \in L_{i}} c_{i}(o)$.
(6) Define $c_{i+1}(o)=c_{i}(o)$ if $o \notin L_{i}$ and $c_{i+1}(o)=c_{i}(o)-m_{i}$ if $o \in L_{i}$.
(3) Increase $\mathrm{h}^{\mathrm{LM}-c u t}(s)$ by m_{i}.
(8) Set $i=i+1$ and continue with step 2 .

Example

$\Pi=\left\langle\mathcal{F}, \mathcal{O}, s_{\text {init }}, s_{\text {gool }}, c\right\rangle$

- $\mathcal{F}=\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, i, g\right\}, s_{\text {init }}=\{i\}, s_{\text {goal }}=\{g\}$
- \mathcal{O} :

op	pre	add	del	cost
o_{1}	$\{i\}$	$\left\{f_{1}, f_{2}\right\}$	\emptyset	2
o_{2}	$\{i\}$	$\left\{f_{2}, f_{3}\right\}$	\emptyset	3
o_{3}	$\left\{f_{1}, f_{3}\right\}$	$\left\{f_{4}\right\}$	$\left\{f_{3}\right\}$	1
o_{4}	$\left\{f_{2}, f_{4}\right\}$	$\left\{f_{5}\right\}$	$\left\{f_{2}\right\}$	3
o_{5}	$\left\{f_{1}, f_{3}, f_{5}\right\}$	$\{g\}$	$\left\{f_{3}, f_{4}\right\}$	1
o_{6}	$\left\{f_{1}\right\}$	$\left\{f_{5}\right\}$	$\left\{f_{1}, f_{3}\right\}$	5

Bibliography

[BH10] Blai Bonet and Malte Helmert.
Strengthening landmark heuristics via hitting sets.
In 19th European Conference on Artificial Intelligence, ECAI, pages 329-334, 2010.
[HD09] Malte Helmert and Carmel Domshlak.
Landmarks, critical paths and abstractions: What's the difference anyway?
In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS), 2009.

