LM-Cut Heuristic

Daniel Fišer

March 13, 2017

Image: A mathematical states and a mathem

STRIPS

A problem in STRIPS is a tuple $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

- \mathcal{F} is a finite set of **facts**
- $s_{init} \subseteq \mathcal{F}$ is an initial state; $s_{goal} \subseteq \mathcal{F}$ is a goal specification
- \mathcal{O} is a set of well-formed **operators** o specified by $pre(o) \subseteq \mathcal{F}$, $del(o) \subseteq \mathcal{F}$, and $add(o) \subseteq \mathcal{F}$
- $c: \mathcal{O} \mapsto \mathbb{R}^+_0$ is a cost function.
- A state $s \subseteq \mathcal{F}$; a goal state $s_g \supseteq s_{goal}$.
- An operator o is **applicable** in a state s iff $pre(o) \subseteq s$ and the **resulting state** of applying o is $o[s] = (s \setminus del(o)) \cup add(o)$.
- A sequence of operators $\pi = \langle o_1, ..., o_n \rangle$: $\pi[s] = o_n[...o_2[o_1[s]]...]$.
- π is a **plan** iff $s_{goal} \subseteq \pi[s_{init}]$.

A relaxed problem Π^+ is derived from Π by ignoring all delete effects.

(Action/Operator) Landmark

Definition

A landmark $L \subseteq O$ is a set of operators such that every plan π must contain at least one operator from L.

This type of landmark is sometimes also called action landmark or disjunctive action landmark.

$h_{c_i}^{\max}(s)$ for a state s and a cost function c_i

$$\begin{aligned} \forall f \in s : \mathbf{h}_{c_i}^{\max}(f) &= 0\\ \forall f \in \mathcal{F} \setminus s : \mathbf{h}_{c_i}^{\max}(f) &= \min_{o \in \mathcal{O}, f \in \mathrm{add}(o)} \left(\mathbf{h}_{c_i}^{\max}(o) + c_i(o)\right)\\ \forall o \in \mathcal{O} : \mathbf{h}_{c_i}^{\max}(o) &= \max_{f \in \mathrm{pre}(o)} \mathbf{h}_{c_i}^{\max}(f)\\ \mathbf{h}_{c_i}^{\max}(s) &= \max_{f \in s_{goal}} \mathbf{h}_{c_i}^{\max}(f) \end{aligned}$$

イロト イ団ト イヨト イヨト

$\mathsf{h}_{c_i}^{\max}$

	Algorithm 1: $h_{c_i}^{\max}$						
	Input : $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c_i \rangle$, state s						
	Output : $h_{c_i}^{\max}(f) \forall f \in \mathcal{F}$						
1	Initialize min priority queue PQ.init $(\{(f,0) \mid f \in s\} \cup \{(f,\infty) \mid f \in \mathcal{F} \setminus s\})$;						
2	Initialize number of unsatisfied preconditions: $U(o) \leftarrow \operatorname{pre}(o) \forall o \in \mathcal{O};$						
3	while not PQ.empty() do						
4	$(f, \mathbf{h}_{c_i}^{\max}(f)) \leftarrow PQ.pop() /* Pop \text{ the element with the lowest } \mathbf{h}_{c_i}^{\max}(f)$	*/					
5	for each $o \in \mathcal{O}, f \in pre(o)$ do						
6	$ U(o) \leftarrow U(o) - 1; $						
7	if $U(o) = 0$ then						
	/* $\mathbf{h}_{c_i}^{\max}(\mathbf{f})$ must be $\max_{g \in \text{pre}(o)} \mathbf{h}_{c_i}^{\max}(g)$ because of PQ	*/					
8	PQ.update($\{(g, h_{c_i}^{\max}(f) + c_i(o)) \mid g \in add(o)\}$);						
	<pre>/* PQ.update() can only decrease keys.</pre>	*/					
9	end						
10	end						
11	end						

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

Justification Graph

Construction of Justification Graph for State \boldsymbol{s}

- Given a set of operators \mathcal{O} , a cost function c_i and $h_{c_i}^{\max}(f)$ for all $f \in \mathcal{F}$.
- Set $p(o) = \underset{f \in \text{pre}(o)}{\arg \max} \underset{c_i}{\operatorname{h}_{c_i}^{\max}}(f)$ for each $o \in \mathcal{O}$ (breaking ties arbitrarily).
- Create a graph node for each fact $f \in \mathcal{F}$.
- For each operator o and each fact $f \in pre(o)$, create an edge from p(o) to f with cost $c_i(o)$ and label o.
- Add a node s' and zero-cost edges from s' to f for each $f \in s$.
- \bullet Add a node t and a zero-cost edge from $\operatorname*{arg\,max}_{f \in s_{goal}} \mathrm{h}_{c_i}^{\max}(f)$ to t.

s-*t*-cut

Construction of *s*-*t*-cut $C_i = (V_i^0, V_i^{\star} \cup V_i^b)$

- V_i^{*} contains all facts from which t can be reached through a zero-cost path.
- V_i^0 contains all facts reachable from s without passing through any fact from V_i^{\star} .
- V_i^b contains all remaining facts.
- Clearly $t \in V_i^*$ and $s \in V_i^0$.
- Landmark L_i is a set of labels of the edges that cross the cut C_i (i.e., lead from V_i⁰ to V_i[⋆]).

LM-Cut Heuristics

$\mathsf{h}^{\mathrm{LM-cut}}(\mathsf{s})$ for $\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

- Set i = 1 and $c_1 = c$ and $h^{LM-cut}(s) = 0$.
- 2 Compute $h_{c_i}^{\max}(f)$ for all facts $f \in \mathcal{F}$, terminate if $h_{c_i}^{\max}(s) = 0$.
- Onstruct the justification graph.
- Construct an s-t-cut C_i and obtain the landmark L_i .

• Let
$$m_i = \min_{o \in L_i} c_i(o)$$
.

- **o** Define $c_{i+1}(o) = c_i(o)$ if $o \notin L_i$ and $c_{i+1}(o) = c_i(o) m_i$ if $o \in L_i$.
- Increase $h^{LM-cut}(s)$ by m_i .
- **③** Set i = i + 1 and continue with step 2.

Example

$\Pi = \langle \mathcal{F}, \mathcal{O}, s_{init}, s_{goal}, c \rangle$

•
$$\mathcal{F} = \{f_1, f_2, f_3, f_4, f_5, i, g\}, s_{init} = \{i\}, s_{goal} = \{g\}$$

• *O* :

ор	pre	add	del	cost
o_1	$\{i\}$	$\{f_1, f_2\}$	Ø	2
o_2	$\{i\}$	$\{f_2, f_3\}$	Ø	3
03	$\{f_1, f_3\}$	$\{f_4\}$	$\{f_3\}$	1
o_4	$\{f_2, f_4\}$	$\{f_5\}$	$\{f_2\}$	3
o_5	$\{f_1, f_3, f_5\}$	$\{g\}$	$\{f_3, f_4\}$	1
06	$\{f_1\}$	$\{f_5\}$	$\{f_1, f_3\}$	5

イロト イ団ト イヨト イヨト

Bibliography

[BH10] Blai Bonet and Malte Helmert.

Strengthening landmark heuristics via hitting sets.

In 19th European Conference on Artificial Intelligence, ECAI, pages 329-334, 2010.

[HD09] Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions: What's the difference anyway? In Proceedings of the 19th International Conference on Automated Planning and Scheduling (ICAPS), 2009.