Abstractions

PAH (Planning and Games) Michal Štolba

michal.stolba@agents.fel.cvut.cz

Abstractions

- General approach to computing heuristic estimates
- *Abstract* multiple states into one to make the problem smaller
 - But preserve the transition behaviour
- Easy to be admissible

- To give admissible estimates, an abstraction T['] of transition system T['] does not have to satisfy:
 - 1. if s is the init state in T , then a(s) is the init state in T'
 - 2. a(s) is a goal state in T' if and only if s is a goal state in T
 - 3. if T has a transition from s to t, then T, has a transition from a(s) to a(t)

Answer:

2. If s is a goal state in T, then a(s) is a goal state in T['].

- Which combination of several abstractions is always admissible?:
 - 1. sum
 - 2. multiplication
 - 3. maximum

Answer:

3. maximum

- Let Π be an FDR planning task, and let A be an abstraction of T(Π) with abstraction mapping α. Then h^{A,α} is:
 - 1. safe, goal-aware, admissible and consistent
 - 2. safe, goal-aware, not admissible and not consistent
 - 3. only admissible

Answer:

1. safe, goal-aware, admissible and consistent

- Let $\alpha_1 \dots \alpha_k$ be abstraction mappings on T.
- We say that α₁... α_k are orthogonal if for all transitions
 <s,l,t> of T :
 - 1. $\alpha_i(s) \mathrel{!=} \alpha_j(t)$ for all $i \mathrel{!=} j$
 - 2. $\alpha_i(s) != \alpha_i(t)$ for at least one $i \in [k]$
 - 3. $\alpha_i(s) != \alpha_i(t)$ for at most one $i \in [k]$

Answer:

3. $\alpha_i(s) != \alpha_i(t)$ for at most one $i \in [k]$

- Let $\alpha_1 \dots \alpha_k$ be orthogonal abstraction mappings on T.
- Then $\sum_{i \in [k]} h^{A, \alpha_i}$ is:
 - 1. safe, goal-aware, admissible and consistent
 - 2. safe, goal-aware, not admissible and not consistent
 - 3. only admissible

Answer:

1. safe, goal-aware, admissible and consistent

• Let $h^{A,\alpha}$ and $h^{A,\beta}$ be abstraction heuristics for the same planning task Π such that $<A,\alpha>$ is a refinement of $<B,\beta>$.

• Then:

- 1. $h^{A,\alpha} == h^{A,\beta}$ for all states s of Π .
- 2. $h^{A,\alpha} \le h^{A,\beta}$ for all states s of Π .
- 3. $h^{A,\alpha} >= h^{A,\beta}$ for all states s of Π .

Answer:

3. $h^{A,\alpha} >= h^{A,\beta}$ for all states s of Π .